Effects of cytoskeletal network mesh size on cargo transport

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Nimisha Krishnan, Niranjan Sarpangala, Maria Gamez, Ajay Gopinathan, Jennifer L. Ross
{"title":"Effects of cytoskeletal network mesh size on cargo transport","authors":"Nimisha Krishnan,&nbsp;Niranjan Sarpangala,&nbsp;Maria Gamez,&nbsp;Ajay Gopinathan,&nbsp;Jennifer L. Ross","doi":"10.1140/epje/s10189-023-00358-8","DOIUrl":null,"url":null,"abstract":"<p>Intracellular transport of cargoes in the cell is essential for the organization and functioning cells, especially those that are large and elongated. The cytoskeletal networks inside large cells can be highly complex, and this cytoskeletal organization can have impacts on the distance and trajectories of travel. Here, we experimentally created microtubule networks with varying mesh sizes and examined the ability of kinesin-driven quantum dot cargoes to traverse the network. Using the experimental data, we deduced parameters for cargo detachment at intersections and away from intersections, allowing us to create an analytical theory for the run length as a function of mesh size. We also used these parameters to perform simulations of cargoes along paths extracted from the experimental networks. We find excellent agreement between the trends in run length, displacement, and trajectory persistence length comparing the experimental and simulated trajectories.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 11","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-023-00358-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Intracellular transport of cargoes in the cell is essential for the organization and functioning cells, especially those that are large and elongated. The cytoskeletal networks inside large cells can be highly complex, and this cytoskeletal organization can have impacts on the distance and trajectories of travel. Here, we experimentally created microtubule networks with varying mesh sizes and examined the ability of kinesin-driven quantum dot cargoes to traverse the network. Using the experimental data, we deduced parameters for cargo detachment at intersections and away from intersections, allowing us to create an analytical theory for the run length as a function of mesh size. We also used these parameters to perform simulations of cargoes along paths extracted from the experimental networks. We find excellent agreement between the trends in run length, displacement, and trajectory persistence length comparing the experimental and simulated trajectories.

Abstract Image

细胞骨架网络网格大小对货物运输的影响。
细胞内货物运输对细胞的组织和功能至关重要,尤其是那些大而细长的细胞。大细胞内的细胞骨架网络可能非常复杂,这种细胞骨架组织可能对旅行的距离和轨迹产生影响。在这里,我们通过实验创建了具有不同网格大小的微管网络,并检查了驱动蛋白驱动的量子点货物穿越网络的能力。利用实验数据,我们推导了交叉口和远离交叉口的货物分离参数,使我们能够创建一个作为网格尺寸函数的行程长度的分析理论。我们还使用这些参数对从实验网络中提取的路径上的货物进行了模拟。通过比较实验轨迹和模拟轨迹,我们发现行程长度、位移和轨迹持续长度的趋势非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信