Kara Hughes, Marco Pineda, Sasha Omanovic, Viviane Yargeau
{"title":"Study on the importance of the reductive degradation of GenX in its overall electrochemical degradation process on different cathode materials.","authors":"Kara Hughes, Marco Pineda, Sasha Omanovic, Viviane Yargeau","doi":"10.1016/j.scitotenv.2023.168415","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoro alkylated substances (PFAS) are well known for their recalcitrant nature caused by the abundance of CF bonds. It has been proven that electrochemical degradation is a potentially suitable technique for treating PFAS; however, most studies solely focus on electrochemical oxidation, with limited attention given to electrochemical reduction, and the relative contribution of the two towards the total PFAS degradation has not yet been elucidated. This manuscript reports an investigation on the contribution of electroreduction to the overall electrodegradation of a target PFAS, HFPO-DA (i.e. GenX), using a boron doped diamond (BDD) anode and different cathode materials (Cu, Ti, Au). The oxidation and reduction reactions were successfully decoupled from each other and studied simultaneously using an electrochemical H-cell with an agar membrane. It was determined that reduction plays a significant role in the overall degradation of GenX for each of the cathodes studied, with its contribution ranging from 52 % for the Ti cathode, to 66 % for Cu, and to 92 % for Au.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2023.168415","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoro alkylated substances (PFAS) are well known for their recalcitrant nature caused by the abundance of CF bonds. It has been proven that electrochemical degradation is a potentially suitable technique for treating PFAS; however, most studies solely focus on electrochemical oxidation, with limited attention given to electrochemical reduction, and the relative contribution of the two towards the total PFAS degradation has not yet been elucidated. This manuscript reports an investigation on the contribution of electroreduction to the overall electrodegradation of a target PFAS, HFPO-DA (i.e. GenX), using a boron doped diamond (BDD) anode and different cathode materials (Cu, Ti, Au). The oxidation and reduction reactions were successfully decoupled from each other and studied simultaneously using an electrochemical H-cell with an agar membrane. It was determined that reduction plays a significant role in the overall degradation of GenX for each of the cathodes studied, with its contribution ranging from 52 % for the Ti cathode, to 66 % for Cu, and to 92 % for Au.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture