B. Grosz, A. Matson, K. Butterbach-Bahl, T. Clough, E. A. Davidson, R. Dechow, S. DelGrosso, E. Diamantopoulos, P. Dörsch, E. Haas, H. He, C. V. Henri, D. Hui, K. Kleineidam, D. Kraus, M. Kuhnert, J. Léonard, C. Müller, S. O. Petersen, D. Sihi, I. Vogeler, R. Well, J. Yeluripati, J. Zhang, C. Scheer
{"title":"Modeling Denitrification: Can We Report What We Don't Know?","authors":"B. Grosz, A. Matson, K. Butterbach-Bahl, T. Clough, E. A. Davidson, R. Dechow, S. DelGrosso, E. Diamantopoulos, P. Dörsch, E. Haas, H. He, C. V. Henri, D. Hui, K. Kleineidam, D. Kraus, M. Kuhnert, J. Léonard, C. Müller, S. O. Petersen, D. Sihi, I. Vogeler, R. Well, J. Yeluripati, J. Zhang, C. Scheer","doi":"10.1029/2023AV000990","DOIUrl":null,"url":null,"abstract":"<p>Biogeochemical models simulate soil nitrogen (N) turnover and are often used to assess N losses through denitrification. Though models simulate a complete N budget, often only a subset of N pools/fluxes (i.e., N<sub>2</sub>O, <math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>, NH<sub>3</sub>, NO<sub><i>x</i></sub>) are published since the full budget cannot be validated with measured data. Field studies rarely include full N balances, especially N<sub>2</sub> fluxes, which are difficult to quantify. Limiting publication of modeling results based on available field data represents a missed opportunity to improve the understanding of modeled processes. We propose that the modeler community support publication of all simulated N pools and processes in future studies.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"4 6","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023AV000990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biogeochemical models simulate soil nitrogen (N) turnover and are often used to assess N losses through denitrification. Though models simulate a complete N budget, often only a subset of N pools/fluxes (i.e., N2O, , NH3, NOx) are published since the full budget cannot be validated with measured data. Field studies rarely include full N balances, especially N2 fluxes, which are difficult to quantify. Limiting publication of modeling results based on available field data represents a missed opportunity to improve the understanding of modeled processes. We propose that the modeler community support publication of all simulated N pools and processes in future studies.