{"title":"Efficient VLSI architectures of lifting based 3D discrete wavelet transform","authors":"M. Mohamed Asan Basiri","doi":"10.1049/iet-cdt.2020.0038","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Discrete wavelet transform (DWT) is widely used in the image and video compression due to its high compression ratio and resolution. This study proposes efficient very large scale integration (VLSI) architectures of lifting based 3D-DWT using (5,3) and (9,7) Daubechies wavelets. The advantage of these proposed architectures is the absence of storage buffer in between the row, column, and temporal processes. Also, five and nine numbers of frames of the 3D signal can be processed in parallel using the proposed (5,3) and (9,7) lifting based DWTs, respectively. Due to this parallelism and the elimination of storage buffers, the throughput of the proposed design is greater than other existing techniques. The authors have implemented all the existing and proposed 3D-DWTs using 45 nm CMOS library with Cadence and Artix-7 FPGA with Xilinx Vivado. The synthesis results show that the proposed designs achieve significant improvement in throughput than various existing designs. For example, the proposed (9,7) lifting based 3D-DWT achieves 85.4% of improvement in the throughput than the conventional design.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"14 6","pages":"247-255"},"PeriodicalIF":1.1000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/iet-cdt.2020.0038","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2020.0038","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 3
Abstract
Discrete wavelet transform (DWT) is widely used in the image and video compression due to its high compression ratio and resolution. This study proposes efficient very large scale integration (VLSI) architectures of lifting based 3D-DWT using (5,3) and (9,7) Daubechies wavelets. The advantage of these proposed architectures is the absence of storage buffer in between the row, column, and temporal processes. Also, five and nine numbers of frames of the 3D signal can be processed in parallel using the proposed (5,3) and (9,7) lifting based DWTs, respectively. Due to this parallelism and the elimination of storage buffers, the throughput of the proposed design is greater than other existing techniques. The authors have implemented all the existing and proposed 3D-DWTs using 45 nm CMOS library with Cadence and Artix-7 FPGA with Xilinx Vivado. The synthesis results show that the proposed designs achieve significant improvement in throughput than various existing designs. For example, the proposed (9,7) lifting based 3D-DWT achieves 85.4% of improvement in the throughput than the conventional design.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.