Carbon-Based Electron Buffer Layer on ZnOx−Fe5C2−Fe3O4 Boosts Ethanol Synthesis from CO2 Hydrogenation

Yang Wang, Wenhang Wang, Ruosong He, Meng Li, Jinqiang Zhang, Fengliang Cao, Jianxin Liu, Shiyuan Lin, Xinhua Gao, Guohui Yang, Mingqing Wang, Tao Xing, Tao Liu, Qiang Liu, Prof. Han Hu, Prof. Noritatsu Tsubaki, Prof. Mingbo Wu
{"title":"Carbon-Based Electron Buffer Layer on ZnOx−Fe5C2−Fe3O4 Boosts Ethanol Synthesis from CO2 Hydrogenation","authors":"Yang Wang,&nbsp;Wenhang Wang,&nbsp;Ruosong He,&nbsp;Meng Li,&nbsp;Jinqiang Zhang,&nbsp;Fengliang Cao,&nbsp;Jianxin Liu,&nbsp;Shiyuan Lin,&nbsp;Xinhua Gao,&nbsp;Guohui Yang,&nbsp;Mingqing Wang,&nbsp;Tao Xing,&nbsp;Tao Liu,&nbsp;Qiang Liu,&nbsp;Prof. Han Hu,&nbsp;Prof. Noritatsu Tsubaki,&nbsp;Prof. Mingbo Wu","doi":"10.1002/ange.202311786","DOIUrl":null,"url":null,"abstract":"<p>The conversion of CO<sub>2</sub> into ethanol with renewable H<sub>2</sub> has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration of the key intermediates, therefore altering the reaction network for targeted synthesis. Herein, we describe a catalytic system in which a carbon buffer layer is employed to tailor the electronic properties of the ternary ZnO<sub>x</sub>−Fe<sub>5</sub>C<sub>2</sub>−Fe<sub>3</sub>O<sub>4</sub>, in which the electron-transfer pathway (ZnO<sub>x</sub>→Fe species or carbon layer) ensures the appropriate adsorption strength of −CO* on the catalytic interface, facilitating C−C coupling between −CH<sub>x</sub>* and −CO* for ethanol synthesis. Benefiting from this unique electron-transfer buffering effect, an extremely high ethanol yield of 366.6 g<sub>EtOH</sub> kg<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> (with CO of 10 vol % co-feeding) is achieved from CO<sub>2</sub> hydrogenation. This work provides a powerful electronic modulation strategy for catalyst design in terms of highly oriented synthesis.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202311786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The conversion of CO2 into ethanol with renewable H2 has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration of the key intermediates, therefore altering the reaction network for targeted synthesis. Herein, we describe a catalytic system in which a carbon buffer layer is employed to tailor the electronic properties of the ternary ZnOx−Fe5C2−Fe3O4, in which the electron-transfer pathway (ZnOx→Fe species or carbon layer) ensures the appropriate adsorption strength of −CO* on the catalytic interface, facilitating C−C coupling between −CHx* and −CO* for ethanol synthesis. Benefiting from this unique electron-transfer buffering effect, an extremely high ethanol yield of 366.6 gEtOH kgcat−1 h−1 (with CO of 10 vol % co-feeding) is achieved from CO2 hydrogenation. This work provides a powerful electronic modulation strategy for catalyst design in terms of highly oriented synthesis.

Abstract Image

ZnOx−Fe5C2−Fe3O4上的碳基电子缓冲层促进CO2加氢合成乙醇
利用可再生H2将CO2转化为乙醇,由于其具有除碳和化学合成的综合功能,引起了人们的极大关注,但仍然具有挑战性。催化剂的电子性质对于确定关键中间体的吸附强度和构型至关重要,从而改变目标合成的反应网络。在此,我们描述了一种催化体系,其中使用碳缓冲层来调整三元ZnOx−Fe5C2−Fe3O4的电子性质,其中电子转移途径(ZnOx→Fe物种或碳层)确保−CO*在催化界面上的适当吸附强度,促进−CHx*和−CO*之间的C−C偶联,用于乙醇合成。得益于这种独特的电子转移缓冲效应,乙醇产量极高,达到366.6 gEtOH kgcat−1 h−1(CO为10 vol % 共进料)由CO2加氢实现。这项工作为高度定向合成的催化剂设计提供了一种强大的电子调制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信