{"title":"Chiral supramolecular nanomaterials: From chirality transfer and amplification to regulation and applications","authors":"Wenrui Chen, Boran Li, Guanbin Gao, Taolei Sun","doi":"10.1002/idm2.12117","DOIUrl":null,"url":null,"abstract":"<p>Chirality is an omnipresent structural feature found in nature. The transfer and amplification of chirality are widely recognized phenomena. In appropriate solvents, chiral molecules can self-assemble into diverse chiral supramolecular nanomaterials with unique properties. In the past two decades, there has been a growing number of reported chiral supramolecular nanomaterials. Significant advancements have been made in the transfer and amplification of chirality within these materials, as well as their regulation and applications. Therefore, it is essential to summarize the progress made in this field. Here we present a comprehensive overview of the latest advancements in chiral supramolecular nanomaterials, ranging from chirality transfer and amplification to regulation and applications. This review aims to deepen our understanding of the fundamental origins of inherent chirality in the chiral supramolecular nanomaterials, while also providing a reference for expanding their potential applications.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"2 5","pages":"689-713"},"PeriodicalIF":24.5000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chirality is an omnipresent structural feature found in nature. The transfer and amplification of chirality are widely recognized phenomena. In appropriate solvents, chiral molecules can self-assemble into diverse chiral supramolecular nanomaterials with unique properties. In the past two decades, there has been a growing number of reported chiral supramolecular nanomaterials. Significant advancements have been made in the transfer and amplification of chirality within these materials, as well as their regulation and applications. Therefore, it is essential to summarize the progress made in this field. Here we present a comprehensive overview of the latest advancements in chiral supramolecular nanomaterials, ranging from chirality transfer and amplification to regulation and applications. This review aims to deepen our understanding of the fundamental origins of inherent chirality in the chiral supramolecular nanomaterials, while also providing a reference for expanding their potential applications.