Tuning the Stacking Modes of Ultrathin Two-Dimensional Metal–Organic Framework Nanosheet Membranes for Highly Efficient Hydrogen Separation

Shizheng Song, Wei Wang, Yali Zhao, Wufeng Wu, Prof. Yanying Wei, Prof. Haihui Wang
{"title":"Tuning the Stacking Modes of Ultrathin Two-Dimensional Metal–Organic Framework Nanosheet Membranes for Highly Efficient Hydrogen Separation","authors":"Shizheng Song,&nbsp;Wei Wang,&nbsp;Yali Zhao,&nbsp;Wufeng Wu,&nbsp;Prof. Yanying Wei,&nbsp;Prof. Haihui Wang","doi":"10.1002/ange.202312995","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) metal–organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu<sub>2</sub>Br(IN)<sub>2</sub>]<sub>n</sub> (IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H<sub>2</sub>/CH<sub>4</sub> (selectivity &gt;290 with H<sub>2</sub> permeance &gt;520 GPU) and H<sub>2</sub>/CO<sub>2</sub> (selectivity &gt;190 with H<sub>2</sub> permeance &gt;590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco-friendly H<sub>2</sub> separation.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"135 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202312995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) metal–organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu2Br(IN)2]n (IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H2/CH4 (selectivity >290 with H2 permeance >520 GPU) and H2/CO2 (selectivity >190 with H2 permeance >590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco-friendly H2 separation.

调节超薄二维金属-有机框架纳米片膜的堆叠模式实现高效氢气分离
二维(2D)金属-有机骨架(MOF)膜由于其结构多样性和几何功能,被认为是下一代潜在的气体分离膜。然而,实现2D MOF膜的合理结构设计和理解MOF纳米片堆叠模式对膜分离性能的影响仍然是具有挑战性的任务。在这里,我们报道了一种基于[Cu2Br(IN)2]n(IN=isonicotinato)纳米片的新型2D MOF膜,并提出纳米片的协同堆叠模式对气体分离性能有显著影响。2D MOF纳米片的堆叠由不同滴涂温度下的溶剂液滴动力学行为控制。我们的2D MOF纳米片膜对H2/CH4(选择性>290,H2渗透率>520GPU)和H2/CO2(选择性>190,H2渗透率<590GPU)表现出高的气体分离性能,超过了Robeson上限,为环保H2分离铺平了一条潜在的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信