{"title":"Power-efficient reliable register file for aggressive-environment applications","authors":"Ihsen Alouani, Hamzeh Ahangari, Ozcan Ozturk, Smail Niar","doi":"10.1049/iet-cdt.2018.5047","DOIUrl":null,"url":null,"abstract":"In a context of increasing demands for on-board data processing, insuring reliability under reduced power budget is a serious design challenge for embedded system manufacturers. Particularly, embedded processors in aggressive environments need to be designed with error hardening as a primary goal, not an afterthought. As Register File (RF) is a critical element within the processor pipeline, enhancing RF reliability is mandatory to design fault immune computing systems. This study proposes integer and floating point RF reliability enhancement techniques. Specifically, the authors propose Adjacent Register Hardened RF, a new RF architecture that exploits the adjacent byte-level narrow-width values for hardening integer registers at runtime. Registers are paired together by special switches referred to as joiners and non-utilised bits of each register are exploited to enhance the reliability of its counterpart register. Moreover, they suggest sacrificing the least significant bits of the Mantissa to enhance the reliability of the floating point critical bits, namely, Exponent and Sign bits. The authors’ results show that with a low power budget compared to state of the art techniques, they achieve better results under both normal and highly aggressive operating conditions.","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"14 1","pages":"1-8"},"PeriodicalIF":1.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/iet-cdt.2018.5047","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2018.5047","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In a context of increasing demands for on-board data processing, insuring reliability under reduced power budget is a serious design challenge for embedded system manufacturers. Particularly, embedded processors in aggressive environments need to be designed with error hardening as a primary goal, not an afterthought. As Register File (RF) is a critical element within the processor pipeline, enhancing RF reliability is mandatory to design fault immune computing systems. This study proposes integer and floating point RF reliability enhancement techniques. Specifically, the authors propose Adjacent Register Hardened RF, a new RF architecture that exploits the adjacent byte-level narrow-width values for hardening integer registers at runtime. Registers are paired together by special switches referred to as joiners and non-utilised bits of each register are exploited to enhance the reliability of its counterpart register. Moreover, they suggest sacrificing the least significant bits of the Mantissa to enhance the reliability of the floating point critical bits, namely, Exponent and Sign bits. The authors’ results show that with a low power budget compared to state of the art techniques, they achieve better results under both normal and highly aggressive operating conditions.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.