Intermediate Temperature Fatigue Induced Precipitation and Associated Corrosion in CrMnFeCoNi High Entropy Alloy

IF 2.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Tiezhuang Han, Jing Wang, Bo Li, Shuang Li, Kaisheng Ming, Fucheng Wang, Bin Miao, Shijian Zheng
{"title":"Intermediate Temperature Fatigue Induced Precipitation and Associated Corrosion in CrMnFeCoNi High Entropy Alloy","authors":"Tiezhuang Han,&nbsp;Jing Wang,&nbsp;Bo Li,&nbsp;Shuang Li,&nbsp;Kaisheng Ming,&nbsp;Fucheng Wang,&nbsp;Bin Miao,&nbsp;Shijian Zheng","doi":"10.1007/s40195-023-01588-7","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the corrosion behavior of high entropy alloys (HEAs) after intermediate temperature fatigue is critical to prevent their catastrophic failures from the reduction of corrosion resistance. Here, we investigated the corrosion behavior of CrMnFeCoNi HEA after 500 °C fatigue test with strain amplitudes of 0.2% and 0.5%. The intermediate temperature fatigue induced two types of precipitates, which were determined as Cr-rich σ phase and NiMn-rich L1<sub>0</sub> phase. Higher strain amplitude not only promoted precipitates generations but also spread the nucleation sites from intergranular to both intergranular and intragranular. Furthermore, we found that the deterioration in corrosion resistance of the alloy was derived from the increase of precipitates, which destroyed the stability of the passive film. The above results revealed that intermediate temperature fatigue impaired the stabilization of the solid solution state and subsequent corrosion resistance of CrMnFeCoNi HEA, where the higher strain amplitude led to more precipitates and more severe corrosion.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-023-01588-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the corrosion behavior of high entropy alloys (HEAs) after intermediate temperature fatigue is critical to prevent their catastrophic failures from the reduction of corrosion resistance. Here, we investigated the corrosion behavior of CrMnFeCoNi HEA after 500 °C fatigue test with strain amplitudes of 0.2% and 0.5%. The intermediate temperature fatigue induced two types of precipitates, which were determined as Cr-rich σ phase and NiMn-rich L10 phase. Higher strain amplitude not only promoted precipitates generations but also spread the nucleation sites from intergranular to both intergranular and intragranular. Furthermore, we found that the deterioration in corrosion resistance of the alloy was derived from the increase of precipitates, which destroyed the stability of the passive film. The above results revealed that intermediate temperature fatigue impaired the stabilization of the solid solution state and subsequent corrosion resistance of CrMnFeCoNi HEA, where the higher strain amplitude led to more precipitates and more severe corrosion.

Abstract Image

CrMnFeCoNi高熵合金中温疲劳析出及相关腐蚀
了解高熵合金在中温疲劳后的腐蚀行为对于防止其因耐腐蚀性降低而发生灾难性失效至关重要。本文研究了CrMnFeCoNi HEA在500°C疲劳试验后的腐蚀行为,应变幅度分别为0.2%和0.5%。中温疲劳诱导了两种类型的析出物,分别为富Cr的σ相和富NiMn的L10相。较高的应变幅度不仅促进了沉淀物的生成,而且使成核位置从晶间扩展到晶间和晶内。此外,我们发现合金耐腐蚀性的降低是由于沉淀物的增加,这破坏了钝化膜的稳定性。上述结果表明,中温疲劳破坏了CrMnFeCoNi HEA的固溶态稳定性和随后的耐腐蚀性,其中较高的应变幅度导致更多的沉淀物和更严重的腐蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信