Zero-Temperature Stochastic Ising Model on Planar Quasi-Transitive Graphs

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Emilio De Santis, Leonardo Lelli
{"title":"Zero-Temperature Stochastic Ising Model on Planar Quasi-Transitive Graphs","authors":"Emilio De Santis,&nbsp;Leonardo Lelli","doi":"10.1007/s10955-023-03177-5","DOIUrl":null,"url":null,"abstract":"<div><p>We study the zero-temperature stochastic Ising model on some connected planar quasi-transitive graphs, which are invariant under rotations and translations. The initial spin configuration is distributed according to a Bernoulli product measure with parameter <span>\\( p\\in (0,1) \\)</span>. In particular, we prove that if <span>\\( p=1/2 \\)</span> and the graph underlying the model satisfies the <i>planar shrink property</i> then all vertices flip infinitely often almost surely.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"190 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-023-03177-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the zero-temperature stochastic Ising model on some connected planar quasi-transitive graphs, which are invariant under rotations and translations. The initial spin configuration is distributed according to a Bernoulli product measure with parameter \( p\in (0,1) \). In particular, we prove that if \( p=1/2 \) and the graph underlying the model satisfies the planar shrink property then all vertices flip infinitely often almost surely.

Abstract Image

平面拟传递图上的零温度随机Ising模型
我们研究了一些连通平面拟传递图上的零温度随机Ising模型,这些图在旋转和平移下是不变的。初始自旋构型是根据参数为\(p\in(0,1)\)的伯努利乘积测度分布的。特别地,我们证明了如果\(p=1/2\)和模型下的图满足平面收缩性质,那么所有顶点几乎肯定地无限翻转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信