The Blume–Emery–Griffiths Model on the FAD Point and on the AD Line

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Paulo C. Lima, Riccardo Mariani, Aldo Procacci, Benedetto Scoppola
{"title":"The Blume–Emery–Griffiths Model on the FAD Point and on the AD Line","authors":"Paulo C. Lima,&nbsp;Riccardo Mariani,&nbsp;Aldo Procacci,&nbsp;Benedetto Scoppola","doi":"10.1007/s10955-023-03181-9","DOIUrl":null,"url":null,"abstract":"<div><p>We analyse the Blume–Emery–Griffiths (BEG) model on the lattice <span>\\({\\mathbb {Z}}^d\\)</span> on the ferromagnetic-antiquadrupolar-disordered (FAD) point and on the antiquadrupolar-disordered (AD) line. In our analysis on the FAD point, we introduce a Gibbs sampler of the ground states at zero temperature, and we exploit it in two different ways: first, we perform via perfect sampling an empirical evaluation of the spontaneous magnetization at zero temperature, finding a non-zero value in <span>\\(d=3\\)</span> and a vanishing value in <span>\\(d=2\\)</span>. Second, using a careful coupling with the Bernoulli site percolation model in <span>\\(d=2\\)</span>, we prove rigorously that under imposing <span>\\(+\\)</span> boundary conditions, the magnetization in the center of a square box tends to zero in the thermodynamical limit and the two-point correlations decay exponentially. Also, using again a coupling argument, we show that there exists a unique zero-temperature infinite-volume Gibbs measure for the BEG. In our analysis of the AD line we restrict ourselves to <span>\\(d=2\\)</span> and, by comparing the BEG model with a Bernoulli site percolation in a matching graph of <span>\\({\\mathbb {Z}}^2\\)</span>, we get a condition for the vanishing of the infinite-volume limit magnetization improving, for low temperatures, earlier results obtained via expansion techniques.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"190 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-023-03181-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We analyse the Blume–Emery–Griffiths (BEG) model on the lattice \({\mathbb {Z}}^d\) on the ferromagnetic-antiquadrupolar-disordered (FAD) point and on the antiquadrupolar-disordered (AD) line. In our analysis on the FAD point, we introduce a Gibbs sampler of the ground states at zero temperature, and we exploit it in two different ways: first, we perform via perfect sampling an empirical evaluation of the spontaneous magnetization at zero temperature, finding a non-zero value in \(d=3\) and a vanishing value in \(d=2\). Second, using a careful coupling with the Bernoulli site percolation model in \(d=2\), we prove rigorously that under imposing \(+\) boundary conditions, the magnetization in the center of a square box tends to zero in the thermodynamical limit and the two-point correlations decay exponentially. Also, using again a coupling argument, we show that there exists a unique zero-temperature infinite-volume Gibbs measure for the BEG. In our analysis of the AD line we restrict ourselves to \(d=2\) and, by comparing the BEG model with a Bernoulli site percolation in a matching graph of \({\mathbb {Z}}^2\), we get a condition for the vanishing of the infinite-volume limit magnetization improving, for low temperatures, earlier results obtained via expansion techniques.

Abstract Image

FAD点和AD线上的Blume–Emery–Griffiths模型
我们分析了在铁磁反极性无序(FAD)点和反极性有序(AD)线上的晶格({\mathbb{Z}}^d\)上的Blume–Emery–Griffiths(BEG)模型。在我们对FAD点的分析中,我们引入了零温度下基态的吉布斯采样器,并以两种不同的方式利用它:首先,我们通过完美采样对零温度下的自发磁化进行经验评估,在\(d=3\)中找到一个非零值,在\。其次,通过与(d=2\)中的伯努利站点渗流模型的仔细耦合,我们严格证明了在强加的(+\)边界条件下,方盒中心的磁化强度在热力学极限下趋于零,并且两点相关性呈指数衰减。此外,再次使用耦合论点,我们证明了BEG存在一个唯一的零温度无限体积吉布斯测度。在我们对AD线的分析中,我们将自己限制在\(d=2\),并且通过将BEG模型与匹配图\({\mathbb{Z}}^2\)中的伯努利位点渗流进行比较,我们得到了无限体积极限磁化消失的条件,对于低温,改进了通过扩展技术获得的早期结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信