{"title":"Analysis of factors determining numerical solution in the calculation of flow with combustion using the ONERA experimental model","authors":"W. Liu","doi":"10.1134/S0869864323030101","DOIUrl":null,"url":null,"abstract":"<div><p>Three-dimensional numerical simulation of a transverse hydrogen jet blowing into a duct with a supersonic flow of air (warmed by a fire heater) has been carried out. The study is based on experimental data obtained at the ONERA-LAERTE facility. The RANS equations for the reacting gas were solved, closed by the SST model and various kinetic mechanisms of hydrogen combustion in air. The channel wall roughness was taken into account in this model. The dependence of the flow characteristics on such physical factors as the shape of the fuel injector channel, the effective roughness height, and various methods of describing molecular diffusion has been studied. It has been established that the equivalent diameter of a grain of sand has a significant influence on the longitudinal pressure distribution in the duct. The influence of chemical kinetics on the flow structure in separation zones within the duct is demonstrated.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864323030101","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1
Abstract
Three-dimensional numerical simulation of a transverse hydrogen jet blowing into a duct with a supersonic flow of air (warmed by a fire heater) has been carried out. The study is based on experimental data obtained at the ONERA-LAERTE facility. The RANS equations for the reacting gas were solved, closed by the SST model and various kinetic mechanisms of hydrogen combustion in air. The channel wall roughness was taken into account in this model. The dependence of the flow characteristics on such physical factors as the shape of the fuel injector channel, the effective roughness height, and various methods of describing molecular diffusion has been studied. It has been established that the equivalent diameter of a grain of sand has a significant influence on the longitudinal pressure distribution in the duct. The influence of chemical kinetics on the flow structure in separation zones within the duct is demonstrated.
期刊介绍:
The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.