Design and guidance of a multi-active debris removal mission

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Minduli C. Wijayatunga, Roberto Armellin, Harry Holt, Laura Pirovano, Aleksander A. Lidtke
{"title":"Design and guidance of a multi-active debris removal mission","authors":"Minduli C. Wijayatunga,&nbsp;Roberto Armellin,&nbsp;Harry Holt,&nbsp;Laura Pirovano,&nbsp;Aleksander A. Lidtke","doi":"10.1007/s42064-023-0159-3","DOIUrl":null,"url":null,"abstract":"<div><p>Space debris have become exceedingly dangerous over the years as the number of objects in orbit continues to increase. Active debris removal (ADR) missions have gained significant interest as effective means of mitigating the risk of collision between objects in space. This study focuses on developing a multi-ADR mission that utilizes controlled reentry and deorbiting. The mission comprises two spacecraft: a Servicer that brings debris to a low altitude and a Shepherd that rendezvous with the debris to later perform a controlled reentry. A preliminary mission design tool (PMDT) was developed to obtain time and fuel optimal trajectories for the proposed mission while considering the effect of <i>J</i><sub>2</sub>, drag, eclipses, and duty cycle. The PMDT can perform such trajectory optimizations for multi-debris missions with computational time under a minute. Three guidance schemes are also studied, taking the PMDT solution as a reference to validate the design methodology and provide guidance solutions to this complex mission profile.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0159-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 4

Abstract

Space debris have become exceedingly dangerous over the years as the number of objects in orbit continues to increase. Active debris removal (ADR) missions have gained significant interest as effective means of mitigating the risk of collision between objects in space. This study focuses on developing a multi-ADR mission that utilizes controlled reentry and deorbiting. The mission comprises two spacecraft: a Servicer that brings debris to a low altitude and a Shepherd that rendezvous with the debris to later perform a controlled reentry. A preliminary mission design tool (PMDT) was developed to obtain time and fuel optimal trajectories for the proposed mission while considering the effect of J2, drag, eclipses, and duty cycle. The PMDT can perform such trajectory optimizations for multi-debris missions with computational time under a minute. Three guidance schemes are also studied, taking the PMDT solution as a reference to validate the design methodology and provide guidance solutions to this complex mission profile.

多活动碎片清除任务的设计和指导
多年来,随着轨道上物体数量的不断增加,空间碎片变得极其危险。主动碎片清除任务作为降低空间物体碰撞风险的有效手段,引起了人们的极大兴趣。本研究的重点是开发一种利用受控再入和脱轨的多ADR任务。该任务包括两个航天器:一个是将碎片带到低空的“服务者”号,另一个是与碎片交会后进行受控再入的“牧羊人”号。开发了一个初步任务设计工具(PMDT),以获得拟议任务的时间和燃料最佳轨迹,同时考虑J2、阻力、日食和占空比的影响。PMDT可以在计算时间不到一分钟的情况下为多碎片任务执行这种轨迹优化。还研究了三种制导方案,以PMDT解决方案为参考,验证了设计方法,并为这一复杂的任务剖面提供了制导解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信