Injective Δ+2 Coloring of Planar Graph Without Short Cycles

Pub Date : 2023-11-08 DOI:10.1007/s10255-023-1098-8
Ying Chen, Lan Tao, Li Zhang
{"title":"Injective Δ+2 Coloring of Planar Graph Without Short Cycles","authors":"Ying Chen,&nbsp;Lan Tao,&nbsp;Li Zhang","doi":"10.1007/s10255-023-1098-8","DOIUrl":null,"url":null,"abstract":"<div><p>A coloring of graph <i>G</i> is an <i>injective coloring</i> if its restriction to the neighborhood of any vertex is injective, which means that any two vertices get different colors if they have a common neighbor. The <i>injective chromatic number</i> χ<sub><i>i</i></sub>(<i>G</i>) of <i>G</i> is the least integer <i>k</i> such that <i>G</i> has an injective <i>k</i>-coloring. In this paper, we prove that (1) if <i>G</i> is a planar graph with girth <i>g</i> ≥ 6 and maximum degree Δ ≥ 7, then <i>χ</i><sub><i>i</i></sub>(<i>G</i>) ≤ Δ + 2; (2) if <i>G</i> is a planar graph with Δ ≥ 24 and without 3,4,7-cycles, then <i>χ</i><sub><i>i</i></sub>(<i>G</i>) ≤ Δ + 2.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1098-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A coloring of graph G is an injective coloring if its restriction to the neighborhood of any vertex is injective, which means that any two vertices get different colors if they have a common neighbor. The injective chromatic number χi(G) of G is the least integer k such that G has an injective k-coloring. In this paper, we prove that (1) if G is a planar graph with girth g ≥ 6 and maximum degree Δ ≥ 7, then χi(G) ≤ Δ + 2; (2) if G is a planar graph with Δ ≥ 24 and without 3,4,7-cycles, then χi(G) ≤ Δ + 2.

分享
查看原文
无短环平面图的Δ+2染色
图G的着色是内射着色,如果它对任何顶点邻域的限制是内射的,这意味着任何两个顶点如果有一个公共邻域,就会得到不同的颜色。G的内射色数χi(G)是最小整数k,使得G具有内射k着色。本文证明了(1)如果G是周长G≥6,最大度Δ≥7的平面图,则χi(G)≤Δ+2;(2) 如果G是Δ≥24且不含3,4,7-环的平面图,则χi(G)≤Δ+2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信