A Novel Error Analysis of Spectral Method for the Anomalous Subdiffusion Problems with Multi-term Time-fractional Derivative

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Bo Tang, Yan-ping Chen, Bin Xie, Xiu-xiu Lin
{"title":"A Novel Error Analysis of Spectral Method for the Anomalous Subdiffusion Problems with Multi-term Time-fractional Derivative","authors":"Bo Tang,&nbsp;Yan-ping Chen,&nbsp;Bin Xie,&nbsp;Xiu-xiu Lin","doi":"10.1007/s10255-023-1091-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to extend a space-time spectral method to address the multi-term time-fractional subdiffusion equations with Caputo derivative. In this method, the Jacobi polynomials are adopted as the basis functions for temporal discretization and the Lagrangian polynomials are used for spatial discretization. An efficient spectral approximation of the weak solution is established. The main work is the demonstration of the well-posedness for the weak problem and the derivation of a posteriori error estimates for the spectral Galerkin approximation. Extensive numerical experiments are presented to perform the validity of a posteriori error estimators, which support our theoretical results.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"39 4","pages":"943 - 961"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1091-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to extend a space-time spectral method to address the multi-term time-fractional subdiffusion equations with Caputo derivative. In this method, the Jacobi polynomials are adopted as the basis functions for temporal discretization and the Lagrangian polynomials are used for spatial discretization. An efficient spectral approximation of the weak solution is established. The main work is the demonstration of the well-posedness for the weak problem and the derivation of a posteriori error estimates for the spectral Galerkin approximation. Extensive numerical experiments are presented to perform the validity of a posteriori error estimators, which support our theoretical results.

一种新的谱法误差分析多项时间分数阶导数的异常解扩散问题
本文旨在推广一种时空谱方法来处理具有Caputo导数的多项时间分数次扩散方程。该方法采用雅可比多项式作为时间离散化的基函数,拉格朗日多项式用于空间离散化。建立了弱解的有效谱近似。主要工作是证明了弱问题的适定性,并推导了谱Galerkin近似的后验误差估计。大量的数值实验证明了后验误差估计的有效性,这支持了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信