{"title":"Large Time Behavior of Solutions to a 3D Keller-Segel-Stokes System Involving a Tensor-valued Sensitivity with Saturation","authors":"Yuan-yuan Ke, Jia-Shan Zheng","doi":"10.1007/s10255-023-1092-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we deal with the initial-boundary value problem for the coupled Keller-Segel-Stokes system with rotational flux, which is corresponding to the case that the chemical is produced instead of consumed, </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div><p> subject to the boundary conditions (∇<i>n</i> − <i>nS</i>(<i>x, n, c</i>)∇<i>c</i>) · <i>ν</i> = ∇<i>c</i> · <i>ν</i> = 0 and <i>u</i> = 0, and suitably regular initial data (<i>n</i><sub>0</sub>(<i>x</i>), <i>c</i><sub>0</sub>(<i>x</i>), <i>u</i><sub>0</sub>(<i>x</i>)), where Ω ⊂ ℝ<sup>3</sup> is a bounded domain with smooth boundary <i>∂</i>Ω. Here <i>S</i> is a chemotactic sensitivity satisfying ∣<i>S</i>(<i>x, n, c</i>)∣ ≤ <i>C</i><sub><i>S</i></sub>(1 + <i>n</i>)<sup>−<i>α</i></sup> with some <i>C</i><sub><i>S</i></sub> > 0 and <i>α</i> > 0. The greatest contribution of this paper is to consider the large time behavior of solutions for the system (KSS), which is still open even in the 2D case. We can prove that the corresponding solution of the system (KSS) decays to (<span>\\({1 \\over {|\\Omega |}}\\int_\\Omega {{n_0}} \\)</span>, <span>\\({1 \\over {|\\Omega |}}\\int_\\Omega {{n_0}} \\)</span>, 0) exponentially, if the coefficient of chemotactic sensitivity is appropriately small. As a precondition to consider the asymptotic behavior, we also show the global existence and boundedness of the corresponding initial-boundary problem KSS with a simplified method. We find a new phenomenon that the suitably small coefficient <i>C</i><sub><i>S</i></sub> of chemotactic sensitivity could benefit the global existence and boundedness of solutions to the model KSS.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"39 4","pages":"1032 - 1064"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1092-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we deal with the initial-boundary value problem for the coupled Keller-Segel-Stokes system with rotational flux, which is corresponding to the case that the chemical is produced instead of consumed,
subject to the boundary conditions (∇n − nS(x, n, c)∇c) · ν = ∇c · ν = 0 and u = 0, and suitably regular initial data (n0(x), c0(x), u0(x)), where Ω ⊂ ℝ3 is a bounded domain with smooth boundary ∂Ω. Here S is a chemotactic sensitivity satisfying ∣S(x, n, c)∣ ≤ CS(1 + n)−α with some CS > 0 and α > 0. The greatest contribution of this paper is to consider the large time behavior of solutions for the system (KSS), which is still open even in the 2D case. We can prove that the corresponding solution of the system (KSS) decays to (\({1 \over {|\Omega |}}\int_\Omega {{n_0}} \), \({1 \over {|\Omega |}}\int_\Omega {{n_0}} \), 0) exponentially, if the coefficient of chemotactic sensitivity is appropriately small. As a precondition to consider the asymptotic behavior, we also show the global existence and boundedness of the corresponding initial-boundary problem KSS with a simplified method. We find a new phenomenon that the suitably small coefficient CS of chemotactic sensitivity could benefit the global existence and boundedness of solutions to the model KSS.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.