{"title":"Suspended sediment dynamics and influencing factors during typhoons in Hangzhou Bay, China","authors":"Ju Huang, Jianrong Zhu","doi":"10.1007/s44218-023-00019-5","DOIUrl":null,"url":null,"abstract":"<div><p>Hangzhou Bay is located in China on the south side of the Changjiang Estuary and is vulnerable to extreme weather, such as typhoons in the summer and autumn. In this study, a three dimensional suspended sediment numerical model was developed that considers the dynamic factors of advection, mixing, wave, and sediment-induced stratification to simulate and analyze the effect of typhoons on water and sediment transport in Hangzhou Bay. The model validations show that the model can sufficiently reproduce the variability of the suspended sediment concentration (SSC) during typhoon conditions. The simulation results show that the high SSC in the bottom layer was mainly distributed in the leading edge of the south coast, and generally exceeded 10 kg·m<sup>−3</sup>. During typhoons, the water and suspended sediment transport in Hangzhou Bay presented a pattern of \"north-landward and south-seaward\" circulation, which promoted the convergence of suspended sediment in the center part of the bay. During Typhoon Rumbia in 2018, the water and sediment flux across the section from Nanhui Cape to Qiqu Archipelago (NQ section) increased by 18.13% and 265.75%, respectively, compared with those before the typhoon. The wave-induced bottom shear stress during typhoons has a very significant impact on the bottom SSC. The sensitivity experiments show that the wave-induced bottom shear stress greatly promotes the sediment resuspension during typhoons, which indirectly makes the sediment-induced stratification stronger than the direct effect of waves on the vertical mixing. The strong winds brought by typhoons mainly enhanced the vertical mixing, which has a stronger effect on surface SSC than waves. The suppression of vertical mixing by sediment-induced stratification during typhoons should not be ignored, especially for high turbidity coastal waters, such as Hangzhou Bay.</p></div>","PeriodicalId":100098,"journal":{"name":"Anthropocene Coasts","volume":"6 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anthropocene Coasts","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44218-023-00019-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hangzhou Bay is located in China on the south side of the Changjiang Estuary and is vulnerable to extreme weather, such as typhoons in the summer and autumn. In this study, a three dimensional suspended sediment numerical model was developed that considers the dynamic factors of advection, mixing, wave, and sediment-induced stratification to simulate and analyze the effect of typhoons on water and sediment transport in Hangzhou Bay. The model validations show that the model can sufficiently reproduce the variability of the suspended sediment concentration (SSC) during typhoon conditions. The simulation results show that the high SSC in the bottom layer was mainly distributed in the leading edge of the south coast, and generally exceeded 10 kg·m−3. During typhoons, the water and suspended sediment transport in Hangzhou Bay presented a pattern of "north-landward and south-seaward" circulation, which promoted the convergence of suspended sediment in the center part of the bay. During Typhoon Rumbia in 2018, the water and sediment flux across the section from Nanhui Cape to Qiqu Archipelago (NQ section) increased by 18.13% and 265.75%, respectively, compared with those before the typhoon. The wave-induced bottom shear stress during typhoons has a very significant impact on the bottom SSC. The sensitivity experiments show that the wave-induced bottom shear stress greatly promotes the sediment resuspension during typhoons, which indirectly makes the sediment-induced stratification stronger than the direct effect of waves on the vertical mixing. The strong winds brought by typhoons mainly enhanced the vertical mixing, which has a stronger effect on surface SSC than waves. The suppression of vertical mixing by sediment-induced stratification during typhoons should not be ignored, especially for high turbidity coastal waters, such as Hangzhou Bay.