Thermal effects on the baryon–quark phase transition in hot hybrid neutron stars: a statistical mean-field baryonic model with the standard NJL model for deconfined quarks
{"title":"Thermal effects on the baryon–quark phase transition in hot hybrid neutron stars: a statistical mean-field baryonic model with the standard NJL model for deconfined quarks","authors":"S. A. Ghaemmaghami, M. Ghazanfari Mojarrad","doi":"10.1140/epjp/s13360-023-04611-z","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the thermal effects on the baryon–quark phase transition (PT), utilizing the Maxwell construction (MC) in an isentropic analysis. In order to model the structure and composition of hot hybrid neutron stars (HHNSs) with <span>\\(\\beta\\)</span>-equilibrated dense matter in the presence (absence) of trapped neutrinos, we use a statistical model which agrees with the Thomas–Fermi (TF) approximation for the baryonic phase and the Nambu–Jona-Lasinio (NJL) model for the deconfined quark phase. Our results show that neutrino trapping can provide a considerable softening of the equation of state EOS in the baryon–quark coexistence phase, compared with the situation governed by untrapped (free-streaming) neutrinos. Having a weak dependence on the quark vector coupling constant in the pure quark phase, the temperature meets its maximum value at the threshold baryonic density for the occurrence of the baryon–quark PT. Based on the assumption of the conserved baryonic mass, all of our HHEOS lead to the stable mass structures for a HHNS.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"138 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-023-04611-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the thermal effects on the baryon–quark phase transition (PT), utilizing the Maxwell construction (MC) in an isentropic analysis. In order to model the structure and composition of hot hybrid neutron stars (HHNSs) with \(\beta\)-equilibrated dense matter in the presence (absence) of trapped neutrinos, we use a statistical model which agrees with the Thomas–Fermi (TF) approximation for the baryonic phase and the Nambu–Jona-Lasinio (NJL) model for the deconfined quark phase. Our results show that neutrino trapping can provide a considerable softening of the equation of state EOS in the baryon–quark coexistence phase, compared with the situation governed by untrapped (free-streaming) neutrinos. Having a weak dependence on the quark vector coupling constant in the pure quark phase, the temperature meets its maximum value at the threshold baryonic density for the occurrence of the baryon–quark PT. Based on the assumption of the conserved baryonic mass, all of our HHEOS lead to the stable mass structures for a HHNS.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.