Properties of the Gradient Squared of the Discrete Gaussian Free Field

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Alessandra Cipriani, Rajat S. Hazra, Alan Rapoport, Wioletta M. Ruszel
{"title":"Properties of the Gradient Squared of the Discrete Gaussian Free Field","authors":"Alessandra Cipriani,&nbsp;Rajat S. Hazra,&nbsp;Alan Rapoport,&nbsp;Wioletta M. Ruszel","doi":"10.1007/s10955-023-03187-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the properties of the centered (norm of the) gradient squared of the discrete Gaussian free field in <span>\\(U_{\\varepsilon }=U/\\varepsilon \\cap \\mathbb {Z}^d\\)</span>, <span>\\(U\\subset \\mathbb {R}^d\\)</span> and <span>\\(d\\ge 2\\)</span>. The covariance structure of the field is a function of the transfer current matrix and this relates the model to a class of systems (e.g. height-one field of the Abelian sandpile model or pattern fields in dimer models) that have a Gaussian limit due to the rapid decay of the transfer current. Indeed, we prove that the properly rescaled field converges to white noise in an appropriate local Besov-Hölder space. Moreover, under a different rescaling, we determine the <i>k</i>-point correlation function and joint cumulants on <span>\\(U_{\\varepsilon }\\)</span> and in the continuum limit as <span>\\(\\varepsilon \\rightarrow 0\\)</span>. This result is related to the analogue limit for the height-one field of the Abelian sandpile (Dürre in Stoch Process Appl 119(9):2725–2743, 2009), with the same conformally covariant property in <span>\\(d=2\\)</span>.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"190 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-023-03187-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the properties of the centered (norm of the) gradient squared of the discrete Gaussian free field in \(U_{\varepsilon }=U/\varepsilon \cap \mathbb {Z}^d\), \(U\subset \mathbb {R}^d\) and \(d\ge 2\). The covariance structure of the field is a function of the transfer current matrix and this relates the model to a class of systems (e.g. height-one field of the Abelian sandpile model or pattern fields in dimer models) that have a Gaussian limit due to the rapid decay of the transfer current. Indeed, we prove that the properly rescaled field converges to white noise in an appropriate local Besov-Hölder space. Moreover, under a different rescaling, we determine the k-point correlation function and joint cumulants on \(U_{\varepsilon }\) and in the continuum limit as \(\varepsilon \rightarrow 0\). This result is related to the analogue limit for the height-one field of the Abelian sandpile (Dürre in Stoch Process Appl 119(9):2725–2743, 2009), with the same conformally covariant property in \(d=2\).

Abstract Image

离散高斯自由场梯度平方的性质
本文研究了离散高斯自由场在(U_。场的协方差结构是转移电流矩阵的函数,这将模型与一类系统(例如阿贝尔沙堆模型的高度一场或二聚体模型中的模式场)相关联,这些系统由于转移电流的快速衰减而具有高斯极限。事实上,我们证明了适当重新缩放的场在适当的局部Besov-Hölder空间中收敛为白噪声。此外,在不同的重标度下,我们确定了\(U_{\varepsilon}\)上和连续体极限中的k点相关函数和联合累积量为\(\varepsilion\rightarrow 0\)。这一结果与阿贝尔沙堆高度一场的模拟极限有关(Dürre in Stoch Process Appl 119(9):2725–27432009),在\(D=2\)中具有相同的保形协变性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信