Unsupervised Anomaly Detection for Rural Fixed Wireless LTE Networks

IF 2.1 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Alexander G. B. Colpitts;Brent R. Petersen
{"title":"Unsupervised Anomaly Detection for Rural Fixed Wireless LTE Networks","authors":"Alexander G. B. Colpitts;Brent R. Petersen","doi":"10.1109/ICJECE.2023.3275975","DOIUrl":null,"url":null,"abstract":"This article presents an anomaly detection (AD) algorithm, robust AD for rural fixed wireless LTE (RAINFOREST), to address the difficulty of fault detection in LTE networks, specifically those that are rural and fixed wireless. We propose a hybrid AD method that uses network key performance indicators (KPIs), historical KPI forecasts, density-based spatial clustering of applications with noise (DBSCAN), and statistical analysis to detect anomalies. RAINFOREST outperformed benchmark AD methods and was able to detect faults in a rural commercial fixed wireless network earlier than existing LTE threshold-based alarms.","PeriodicalId":100619,"journal":{"name":"IEEE Canadian Journal of Electrical and Computer Engineering","volume":"46 4","pages":"256-261"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Canadian Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10272979/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents an anomaly detection (AD) algorithm, robust AD for rural fixed wireless LTE (RAINFOREST), to address the difficulty of fault detection in LTE networks, specifically those that are rural and fixed wireless. We propose a hybrid AD method that uses network key performance indicators (KPIs), historical KPI forecasts, density-based spatial clustering of applications with noise (DBSCAN), and statistical analysis to detect anomalies. RAINFOREST outperformed benchmark AD methods and was able to detect faults in a rural commercial fixed wireless network earlier than existing LTE threshold-based alarms.
农村固定无线LTE网络的无监督异常检测
本文提出了一种异常检测(AD)算法,即用于农村固定无线LTE的鲁棒AD(RAINFOREST),以解决LTE网络中故障检测的困难,特别是农村和固定无线网络中的故障检测。我们提出了一种混合AD方法,该方法使用网络关键性能指标(KPI)、历史KPI预测、带噪声应用程序的基于密度的空间聚类(DBSCAN)和统计分析来检测异常。RAINFOREST的性能优于基准AD方法,能够比现有的基于LTE阈值的警报更早地检测到农村商业固定无线网络中的故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信