Heqing Huang;Yuzhang Lin;Yifan Zhou;Yue Zhao;Peng Zhang;Lingling Fan
{"title":"Data-driven modeling of power system dynamics: Challenges, state of the art, and future work","authors":"Heqing Huang;Yuzhang Lin;Yifan Zhou;Yue Zhao;Peng Zhang;Lingling Fan","doi":"10.23919/IEN.2023.0023","DOIUrl":null,"url":null,"abstract":"With the continual deployment of power-electronics-interfaced renewable energy resources, increasing privacy concerns due to deregulation of electricity markets, and the diversification of demand-side activities, traditional knowledge-based power system dynamic modeling methods are faced with unprecedented challenges. Data-driven modeling has been increasingly studied in recent years because of its lesser need for prior knowledge, higher capability of handling large-scale systems, and better adaptability to variations of system operating conditions. This paper discusses about the motivations and the generalized process of data-driven modeling, and provides a comprehensive overview of various state-of-the-art techniques and applications. It also comparatively presents the advantages and disadvantages of these methods and provides insight into outstanding challenges and possible research directions for the future.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"2 3","pages":"200-221"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10304823/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the continual deployment of power-electronics-interfaced renewable energy resources, increasing privacy concerns due to deregulation of electricity markets, and the diversification of demand-side activities, traditional knowledge-based power system dynamic modeling methods are faced with unprecedented challenges. Data-driven modeling has been increasingly studied in recent years because of its lesser need for prior knowledge, higher capability of handling large-scale systems, and better adaptability to variations of system operating conditions. This paper discusses about the motivations and the generalized process of data-driven modeling, and provides a comprehensive overview of various state-of-the-art techniques and applications. It also comparatively presents the advantages and disadvantages of these methods and provides insight into outstanding challenges and possible research directions for the future.