{"title":"TOA positioning algorithm of LBL system for underwater target based on PSO","authors":"Xing Yao;He Zhangming;Wang Jiongqi;Zhou Xuanying;Chen Yuyun;Pan Xiaogang","doi":"10.23919/JSEE.2023.000107","DOIUrl":null,"url":null,"abstract":"For the underwater long baseline (LBL) positioning systems, the traditional distance intersection algorithm simplifies the sound speed to a constant, and calculates the underwater target position parameters with a nonlinear iteration. However, due to the complex underwater environment, the sound speed changes with time and space, and then the acoustic propagation path is actually a curve, which inevitably causes some errors to the traditional distance intersection positioning algorithm. To reduce the position error caused by the uncertain underwater sound speed, a new time of arrival (TOA) intersection underwater positioning algorithm of LBL system is proposed. Firstly, combined with the vertical layered model of the underwater sound speed, an implicit positioning model of TOA intersection is constructed through the constant gradient acoustic ray tracing. And then an optimization function based on the overall TOA residual square sum is advanced to solve the position parameters for the underwater target. Moreover, the parti-cle swarm optimization (PSO) algorithm is replaced with the traditional nonlinear least square method to optimize the implicit positioning model of TOA intersection. Compared with the traditional distance intersection positioning model, the TOA intersection positioning model is more suitable for the engineering practice and the optimization algorithm is more effective. Simulation results show that the proposed methods in this paper can effectively improve the positioning accuracy for the underwater target.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"34 5","pages":"1319-1332"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10308772/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
For the underwater long baseline (LBL) positioning systems, the traditional distance intersection algorithm simplifies the sound speed to a constant, and calculates the underwater target position parameters with a nonlinear iteration. However, due to the complex underwater environment, the sound speed changes with time and space, and then the acoustic propagation path is actually a curve, which inevitably causes some errors to the traditional distance intersection positioning algorithm. To reduce the position error caused by the uncertain underwater sound speed, a new time of arrival (TOA) intersection underwater positioning algorithm of LBL system is proposed. Firstly, combined with the vertical layered model of the underwater sound speed, an implicit positioning model of TOA intersection is constructed through the constant gradient acoustic ray tracing. And then an optimization function based on the overall TOA residual square sum is advanced to solve the position parameters for the underwater target. Moreover, the parti-cle swarm optimization (PSO) algorithm is replaced with the traditional nonlinear least square method to optimize the implicit positioning model of TOA intersection. Compared with the traditional distance intersection positioning model, the TOA intersection positioning model is more suitable for the engineering practice and the optimization algorithm is more effective. Simulation results show that the proposed methods in this paper can effectively improve the positioning accuracy for the underwater target.