On the derived category of the Cayley Grassmannian

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lyalya Guseva
{"title":"On the derived category of the Cayley Grassmannian","authors":"Lyalya Guseva","doi":"10.1016/j.matpur.2023.09.007","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a full exceptional collection consisting of vector bundles in the derived category of coherent sheaves on the so-called Cayley Grassmannian, the subvariety of the Grassmannian <span><math><mi>Gr</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>)</mo></math></span> parameterizing 3-subspaces that are annihilated by a general 4-form. The main step in the proof of fullness is a construction of two self-dual vector bundles which is obtained from two operations with quadric bundles that might be interesting in themselves.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a full exceptional collection consisting of vector bundles in the derived category of coherent sheaves on the so-called Cayley Grassmannian, the subvariety of the Grassmannian Gr(3,7) parameterizing 3-subspaces that are annihilated by a general 4-form. The main step in the proof of fullness is a construction of two self-dual vector bundles which is obtained from two operations with quadric bundles that might be interesting in themselves.

论Cayley Grassmannian的派生范畴
我们在所谓的Cayley-Grassmannian上构造了一个由相干簇的导出范畴中的向量丛组成的完全例外集合,该簇是Grassmanian Gr(3,7)参数化被一般4-形式湮灭的3-子空间的子变种。充分性证明的主要步骤是构造两个自对偶向量丛,这两个自二重向量丛是从二次丛的两个运算中获得的,二次丛本身可能很有趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信