Creation of a HF and VHF Radio Communication Channel Through an Artificial Ionospheric Repeater

IF 0.8 4区 地球科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
V. P. Uryadov, F. I. Vybornov
{"title":"Creation of a HF and VHF Radio Communication Channel Through an Artificial Ionospheric Repeater","authors":"V. P. Uryadov,&nbsp;F. I. Vybornov","doi":"10.1007/s11141-023-10258-8","DOIUrl":null,"url":null,"abstract":"<div><div><p>We study experimentally the possibility of creating a HF and VHF radio communication channel at frequencies above the hop-by-hop MUF through an artificial ionospheric repeater, which is formed by as scatterers in the form of magnetic field-aligned small-scale artificial ionospheric irregularities, created at the altitudes of reflection of a high-power O-mode pump wave. The experiments were carried out on the Dymer (Kyiv region)—Sura—Kachalinskaya (Volgograd region) path in the HF sounding regime at fixed frequencies and in the chirp sounding regime on the IZMIRAN—Sura—Rostov-on-Don path. On the Novocherkassk (Rostov region)—Sura— Kachalinskaya path, the measurements were carried out at a frequency of 45.8 MHz. Comparison with simulation results is performed. To ensure stable HF and VHF radio communication through an artificial ionospheric repeater, it is necessary to take into account the state of the ionosphere, the frequency of the communication signal, and the height of the location of scattering irregularities. To adapt communication systems to the current ionospheric environment under conditions of insufficient accuracy in predicting the state of the ionosphere, it is necessary to monitor the ionospheric channel using technical tools for broadband oblique HF and VHF sounding.</p></div></div>","PeriodicalId":748,"journal":{"name":"Radiophysics and Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiophysics and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11141-023-10258-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We study experimentally the possibility of creating a HF and VHF radio communication channel at frequencies above the hop-by-hop MUF through an artificial ionospheric repeater, which is formed by as scatterers in the form of magnetic field-aligned small-scale artificial ionospheric irregularities, created at the altitudes of reflection of a high-power O-mode pump wave. The experiments were carried out on the Dymer (Kyiv region)—Sura—Kachalinskaya (Volgograd region) path in the HF sounding regime at fixed frequencies and in the chirp sounding regime on the IZMIRAN—Sura—Rostov-on-Don path. On the Novocherkassk (Rostov region)—Sura— Kachalinskaya path, the measurements were carried out at a frequency of 45.8 MHz. Comparison with simulation results is performed. To ensure stable HF and VHF radio communication through an artificial ionospheric repeater, it is necessary to take into account the state of the ionosphere, the frequency of the communication signal, and the height of the location of scattering irregularities. To adapt communication systems to the current ionospheric environment under conditions of insufficient accuracy in predicting the state of the ionosphere, it is necessary to monitor the ionospheric channel using technical tools for broadband oblique HF and VHF sounding.

通过人工电离层中继器建立高频和甚高频无线电通信信道
我们通过实验研究了通过人工电离层中继器在跳跃MUF以上频率创建高频和甚高频无线电通信信道的可能性,该中继器是由在高功率o模泵浦波反射高度产生的以磁场排列的小规模人工电离层不规则形式形成的散射体形成的。实验分别在Dymer(基辅地区)-Sura-Kachalinskaya(伏尔加格勒地区)固定频率高频探测区和IZMIRAN-Sura-Rostov-on-Don路径上的啁啾探测区进行。在Novocherkassk (Rostov地区)- sura - Kachalinskaya路径上,以45.8 MHz的频率进行测量。并与仿真结果进行了比较。为了保证通过人工电离层中继器进行稳定的HF和VHF无线电通信,需要考虑电离层的状态、通信信号的频率以及散射不规则位置的高度。在预测电离层状态精度不足的情况下,为了使通信系统适应当前电离层环境,有必要利用宽带倾斜HF和VHF探测技术工具对电离层信道进行监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiophysics and Quantum Electronics
Radiophysics and Quantum Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
1.10
自引率
12.50%
发文量
60
审稿时长
6-12 weeks
期刊介绍: Radiophysics and Quantum Electronics contains the most recent and best Russian research on topics such as: Radio astronomy; Plasma astrophysics; Ionospheric, atmospheric and oceanic physics; Radiowave propagation; Quantum radiophysics; Pphysics of oscillations and waves; Physics of plasmas; Statistical radiophysics; Electrodynamics; Vacuum and plasma electronics; Acoustics; Solid-state electronics. Radiophysics and Quantum Electronics is a translation of the Russian journal Izvestiya VUZ. Radiofizika, published by the Radiophysical Research Institute and N.I. Lobachevsky State University at Nizhnii Novgorod, Russia. The Russian volume-year is published in English beginning in April. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信