Side-chain engineering of wide-bandgap copolymers based on two different electron-deficient units for high-performance polymer solar cells†

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Shengwei Shen, Qisheng Tu, Hongxin Tao, Yunlong Ma and Qingdong Zheng
{"title":"Side-chain engineering of wide-bandgap copolymers based on two different electron-deficient units for high-performance polymer solar cells†","authors":"Shengwei Shen, Qisheng Tu, Hongxin Tao, Yunlong Ma and Qingdong Zheng","doi":"10.1039/D3PY00540B","DOIUrl":null,"url":null,"abstract":"<p >Incorporation of electron-deficient units into polymer backbones is a promising strategy to enlarge the bandgaps of polymer donor materials. Herein, two wide-bandgap (WBG) polymer donors (P1 and P3) are designed and synthesized by using two different electron-deficient units of 5,10-dihydrodithieno[3,2-<em>c</em>:3′,2′-<em>h</em>][2,6]naphthyridine-4,9-dione (TND) with different side-chains, and 5,6-difluoro-2-(2-hexyldecyl)-2<em>H</em>-benzo[<em>d</em>][1,2,3]triazole. Due to the strong electron-withdrawing ability of both two building blocks, the two copolymers exhibit large optical bandgaps and low-lying highest occupied molecular orbital (HOMO) energy levels, which are matched with the narrow bandgap nonfullerene acceptor of L8-BO. The alkyl chains on the polymer backbones can affect molecular packing and charge transport properties of the copolymers. P3 with 2-butyloctyl side-chains exhibits an enhanced crystallinity and a preferable face-on molecular orientation. When blended with L8-BO, the best P3-based polymer solar cell (PSC) displays a power conversion efficiency (PCE) of 12.56% with an open-circuit voltage (<em>V</em><small><sub>OC</sub></small>) of 0.742 V, a short-circuit current density (<em>J</em><small><sub>SC</sub></small>) of 22.80 mA cm<small><sup>−2</sup></small>, and a fill factor (FF) of 74.30%. However, the best-performing P1-based PSC shows a relatively low PCE of 10.37%. This study suggests that the polymer donor materials based on two electron-deficient units have great potential in fabricating efficient nonfullerene PSCs.</p>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":" 36","pages":" 4227-4234"},"PeriodicalIF":4.1000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/py/d3py00540b","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Incorporation of electron-deficient units into polymer backbones is a promising strategy to enlarge the bandgaps of polymer donor materials. Herein, two wide-bandgap (WBG) polymer donors (P1 and P3) are designed and synthesized by using two different electron-deficient units of 5,10-dihydrodithieno[3,2-c:3′,2′-h][2,6]naphthyridine-4,9-dione (TND) with different side-chains, and 5,6-difluoro-2-(2-hexyldecyl)-2H-benzo[d][1,2,3]triazole. Due to the strong electron-withdrawing ability of both two building blocks, the two copolymers exhibit large optical bandgaps and low-lying highest occupied molecular orbital (HOMO) energy levels, which are matched with the narrow bandgap nonfullerene acceptor of L8-BO. The alkyl chains on the polymer backbones can affect molecular packing and charge transport properties of the copolymers. P3 with 2-butyloctyl side-chains exhibits an enhanced crystallinity and a preferable face-on molecular orientation. When blended with L8-BO, the best P3-based polymer solar cell (PSC) displays a power conversion efficiency (PCE) of 12.56% with an open-circuit voltage (VOC) of 0.742 V, a short-circuit current density (JSC) of 22.80 mA cm−2, and a fill factor (FF) of 74.30%. However, the best-performing P1-based PSC shows a relatively low PCE of 10.37%. This study suggests that the polymer donor materials based on two electron-deficient units have great potential in fabricating efficient nonfullerene PSCs.

Abstract Image

高性能聚合物太阳能电池中基于两种不同缺电子单元的宽禁带共聚物侧链工程[j]
在聚合物骨架中加入缺电子单元是一种很有前途的扩大聚合物供体材料带隙的策略。本文利用具有不同侧链的5,10-二氢二噻吩[3,2-c:3′,2′-h][2,6]萘啶-4,9-二酮(TND)和5,6-二氟-2-(2-己基癸基)- 2h -苯并[d][1,2,3]三唑两种缺电子单元,设计并合成了两种宽带隙(WBG)聚合物供体(P1和P3)。由于这两种结构块具有很强的吸电子能力,这两种共聚物具有较大的光学带隙和较低的最高已占据分子轨道(HOMO)能级,这与L8-BO的窄带隙非富勒烯受体相匹配。聚合物骨架上的烷基链会影响共聚物的分子填充和电荷输运性能。具有2-丁基基侧链的P3具有增强的结晶度和较好的面朝分子取向。当与L8-BO混合时,最佳的p3基聚合物太阳能电池(PSC)的功率转换效率(PCE)为12.56%,开路电压(VOC)为0.742 V,短路电流密度(JSC)为22.80 mA cm−2,填充因子(FF)为74.30%。然而,表现最好的基于p1的PSC的PCE相对较低,为10.37%。该研究表明,基于两个缺电子单元的聚合物给体材料在制备高效的非富勒烯psc方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信