Xin-Fu He , Liao-Bo Chang , Peng-Fei Han , Ke-Ke Li , Hong-Ju Wu , Yong Tang , Peng Wang , Ya-Ting Zhang , An-Ning Zhou
{"title":"Highly efficient Co−N−C electrocatalysts with a porous structure for the oxygen reduction reaction","authors":"Xin-Fu He , Liao-Bo Chang , Peng-Fei Han , Ke-Ke Li , Hong-Ju Wu , Yong Tang , Peng Wang , Ya-Ting Zhang , An-Ning Zhou","doi":"10.1016/S1872-5805(23)60735-8","DOIUrl":null,"url":null,"abstract":"<div><p>Developing low-cost, highly-efficient and stable catalysts for the oxygen reduction reaction (ORR) of fuel cells is highly desirable yet challenging. We have developed a Co−N−C ORR catalyst with an intact hollow spherical structure and a large surface area which has been systematically characterized. It was produced by the uniform growth of zeolitic imidazolate frameworks (ZIF s) on the surface of nano-polystyrene (PS) spheres followed by their decomposition. Notably, the as-prepared catalyst Co-NHCP-2 (2 represents a mass ratio of 0.6 between Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O and 2-methylimidazole) has a porous structure, a super large specific surface area (1 817.24 m<sup>2</sup> g<sup>−1</sup>), high contents of pyridinic-N, pyrrolic-N, and graphitic-N, and a uniform Co distribution. As an efficient electrocatalyst, it shows promise in terms of a high onset potential (<em>E</em><sub>onset</sub>) of 0.96 V, a high half-wave potential (<em>E</em><sub>1/2</sub>) of 0.84 V, and a limited current density of 5.50 mA cm<sup>−2</sup>. The catalyst has a nearly 4e pathway for the ORR in an alkaline solution as well as stronger methanol tolerance and higher long-term durability than commercially available Pt/C catalysts. These results show that the obtained material may be a promising electrocatalyst for the ORR.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"38 5","pages":"Pages 976-988"},"PeriodicalIF":5.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580523607358","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Developing low-cost, highly-efficient and stable catalysts for the oxygen reduction reaction (ORR) of fuel cells is highly desirable yet challenging. We have developed a Co−N−C ORR catalyst with an intact hollow spherical structure and a large surface area which has been systematically characterized. It was produced by the uniform growth of zeolitic imidazolate frameworks (ZIF s) on the surface of nano-polystyrene (PS) spheres followed by their decomposition. Notably, the as-prepared catalyst Co-NHCP-2 (2 represents a mass ratio of 0.6 between Zn(NO3)2·6H2O and 2-methylimidazole) has a porous structure, a super large specific surface area (1 817.24 m2 g−1), high contents of pyridinic-N, pyrrolic-N, and graphitic-N, and a uniform Co distribution. As an efficient electrocatalyst, it shows promise in terms of a high onset potential (Eonset) of 0.96 V, a high half-wave potential (E1/2) of 0.84 V, and a limited current density of 5.50 mA cm−2. The catalyst has a nearly 4e pathway for the ORR in an alkaline solution as well as stronger methanol tolerance and higher long-term durability than commercially available Pt/C catalysts. These results show that the obtained material may be a promising electrocatalyst for the ORR.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.