In situ electrochemo-mechanical coupling of 2D nanomaterial supercapacitor electrodes

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2023-11-01 DOI:10.1016/j.matt.2023.08.017
Dimitrios Loufakis , Tianyang Zhou , Tasya Nasoetion , Zachary M. Powell , Alejandro I. Martinez , James G. Boyd , Jodie L. Lutkenhaus , Dimitris C. Lagoudas
{"title":"In situ electrochemo-mechanical coupling of 2D nanomaterial supercapacitor electrodes","authors":"Dimitrios Loufakis ,&nbsp;Tianyang Zhou ,&nbsp;Tasya Nasoetion ,&nbsp;Zachary M. Powell ,&nbsp;Alejandro I. Martinez ,&nbsp;James G. Boyd ,&nbsp;Jodie L. Lutkenhaus ,&nbsp;Dimitris C. Lagoudas","doi":"10.1016/j.matt.2023.08.017","DOIUrl":null,"url":null,"abstract":"<div><p><span>Internal stresses that develop during electrochemical cycling can create microstructural electrode damage and capacitance fade. For example, two-dimensional (2D) nanomaterial<span> supercapacitor electrodes can experience damage due to mechanical “breathing” as ions intercalate in and out. However, the coupling between electrochemical and mechanical processes remains extensively unexplored. Here, using a unique instrument designed to measure </span></span><em>in situ</em><span> electrochemo-mechanical coupling, the consequences of stress, strain, and electrochemical charge in 2D supercapacitor electrodes are revealed. Under varying applied tensile strains (up to 1%) on individual electrodes, the capacitance can decrease by as much as 37%. Notably, the </span><em>in situ</em><span> development of internal stress in individual electrodes during electrochemical cycling is revealed, in which the total stress changes by about 5% with the adsorption and release of ions. A micromechanics model using an eigenstrain to capture the electrochemical charge explains the resulting coupling. This combined approach provides insight into other 2D nanomaterial electrodes.</span></p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"6 11","pages":"Pages 3975-3992"},"PeriodicalIF":17.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238523004241","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Internal stresses that develop during electrochemical cycling can create microstructural electrode damage and capacitance fade. For example, two-dimensional (2D) nanomaterial supercapacitor electrodes can experience damage due to mechanical “breathing” as ions intercalate in and out. However, the coupling between electrochemical and mechanical processes remains extensively unexplored. Here, using a unique instrument designed to measure in situ electrochemo-mechanical coupling, the consequences of stress, strain, and electrochemical charge in 2D supercapacitor electrodes are revealed. Under varying applied tensile strains (up to 1%) on individual electrodes, the capacitance can decrease by as much as 37%. Notably, the in situ development of internal stress in individual electrodes during electrochemical cycling is revealed, in which the total stress changes by about 5% with the adsorption and release of ions. A micromechanics model using an eigenstrain to capture the electrochemical charge explains the resulting coupling. This combined approach provides insight into other 2D nanomaterial electrodes.

Abstract Image

二维纳米材料超级电容器电极的原位电化学-力学耦合
电化学循环过程中产生的内应力会造成电极微观结构损坏和电容衰减。例如,当离子插入和插入时,二维(2D)纳米材料超级电容器电极可能会因机械“呼吸”而受损。然而,电化学和机械过程之间的耦合仍然没有得到广泛的探索。在这里,使用一种设计用于测量原位电化学-机械耦合的独特仪器,揭示了2D超级电容器电极中应力、应变和电化学电荷的后果。在各个电极上施加不同的拉伸应变(高达1%)时,电容可以减少37%。值得注意的是,揭示了电化学循环过程中单个电极内部应力的原位发展,其中总应力随着离子的吸附和释放而变化约5%。使用本征应变来捕获电化学电荷的微观力学模型解释了由此产生的耦合。这种组合方法提供了对其他2D纳米材料电极的深入了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信