Chen-Yu Chang, Roberto Prado-Rivera, Mimi Liu, Cheng-Yu Lai* and Daniela R. Radu*,
{"title":"Colloidal Synthesis and Photocatalytic Properties of Cu3NbS4 and Cu3NbSe4 Sulvanite Nanocrystals","authors":"Chen-Yu Chang, Roberto Prado-Rivera, Mimi Liu, Cheng-Yu Lai* and Daniela R. Radu*, ","doi":"10.1021/acsnanoscienceau.2c00021","DOIUrl":null,"url":null,"abstract":"<p >Niobium sulvanites Cu<sub>3</sub>NbX<sub>4</sub> (X = S, Se) have been theoretically predicted as promising candidates for solar photovoltaics and photocatalytic water splitting. This report outlines the first synthesis of Cu<sub>3</sub>NbS<sub>4</sub> and Cu<sub>3</sub>NbSe<sub>4</sub> in a nanocrystalline form. The crystal structures were investigated by X-ray diffraction, identity was confirmed by Raman spectroscopy, and the optoelectronic properties and morphology of Cu<sub>3</sub>NbS<sub>4</sub> and Cu<sub>3</sub>NbSe<sub>4</sub> nanocrystals were examined by UV–vis spectroscopy and transmission electron microscopy, respectively. To gain insight into the Cu<sub>3</sub>NbX<sub>4</sub> formation, a mechanistic study was conducted for Cu<sub>3</sub>NbSe<sub>4</sub> monitoring the nanoparticles’ formation as a function of reaction time. Methylene blue photodegradation tests were conducted to evaluate the photoactivity of Cu<sub>3</sub>NbS<sub>4</sub> and Cu<sub>3</sub>NbSe<sub>4</sub>. The degradation rates, 2.81 × 10<sup>–2</sup> min<sup>–1</sup> and 1.22 × 10<sup>–2</sup> min<sup>–1</sup> proved the photocatalysts’ potential of nanoscale Cu<sub>3</sub>NbX<sub>4</sub>.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"2 5","pages":"440–447"},"PeriodicalIF":4.8000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00021","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Niobium sulvanites Cu3NbX4 (X = S, Se) have been theoretically predicted as promising candidates for solar photovoltaics and photocatalytic water splitting. This report outlines the first synthesis of Cu3NbS4 and Cu3NbSe4 in a nanocrystalline form. The crystal structures were investigated by X-ray diffraction, identity was confirmed by Raman spectroscopy, and the optoelectronic properties and morphology of Cu3NbS4 and Cu3NbSe4 nanocrystals were examined by UV–vis spectroscopy and transmission electron microscopy, respectively. To gain insight into the Cu3NbX4 formation, a mechanistic study was conducted for Cu3NbSe4 monitoring the nanoparticles’ formation as a function of reaction time. Methylene blue photodegradation tests were conducted to evaluate the photoactivity of Cu3NbS4 and Cu3NbSe4. The degradation rates, 2.81 × 10–2 min–1 and 1.22 × 10–2 min–1 proved the photocatalysts’ potential of nanoscale Cu3NbX4.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.