Optimally Selecting Photo- and Electrocatalysis to Facilitate CH4 Activation on TiO2(110) Surface: Localized Photoexcitation versus Global Electric-Field Polarization

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2021-12-21 DOI:10.1021/jacsau.1c00466
Min Zhou,  and , Haifeng Wang*, 
{"title":"Optimally Selecting Photo- and Electrocatalysis to Facilitate CH4 Activation on TiO2(110) Surface: Localized Photoexcitation versus Global Electric-Field Polarization","authors":"Min Zhou,&nbsp; and ,&nbsp;Haifeng Wang*,&nbsp;","doi":"10.1021/jacsau.1c00466","DOIUrl":null,"url":null,"abstract":"<p >Photo- and electrocatalytic technologies hold great promise for activating inert chemical bonds under mild conditions, but rationally selecting a more suitable method in between to maximize the performance remains an open issue, which requires a fundamental understanding of their different catalytic mechanisms. Herein, by first-principles calculations, we systematically compare the activation mechanisms for the C–H bond of the CH<sub>4</sub> molecule on TiO<sub>2</sub>(110) under the photo- and electrocatalytic modes without or with water involved. It quantitatively reveals that the activation barrier of the C–H bond decreases dramatically with a surprising 74% scale by photoexcitation relative to that in thermocatalysis (1.12 eV), while the barrier varies with a maximum promotion of only 5% even under −1 V/Å external electric field (EEF). By detailed geometric/electronic analysis, the superior photocatalytic activity is traced to the highly oxidative lattice O<sub>br</sub><sup>•–</sup> radical excited by a photohole (<i>h</i><sup>+</sup>), which motivates the homolytic C–H bond scission. However, under EEF from −1 V/Å to 1 V/Å, it gives a relatively mild charge polarization on the TiO<sub>2</sub>(110) surface region and thus a limited promotion for breaking the weakly polar C–H bond. By contrast, in the presence of water, we find that EEF can facilitate CH<sub>4</sub> activation indirectly assisted by the surface radical-like OH* species from the oxidative water cleavage at high oxidative potential (&gt;1.85 V vs SHE), which explains the high energy cost to drive electrocatalytic CH<sub>4</sub> conversion in experiment. Alternatively, we demonstrate that more efficient CH<sub>4</sub> activation could be also achieved at much lower oxidative potential when integrating the light irradiation. In such a circumstance, EEF can not only promote the <i>h</i><sup>+</sup> accumulation at the catalyst surface but also help H<sub>2</sub>O deprotonation to form hydroxide, which can serve as an efficient hole-trapper to generate OH<sup>•</sup> radical (OH<sup>–</sup> + <i>h</i><sup>+</sup> → OH<sup>•</sup>), unveiling an interesting synergistic photoelectrocatalytic effect. This work could provide a fundamental insight into the different characteristics of photo- and electrocatalysis in modulating chemical bond cleavage.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"2 1","pages":"188–196"},"PeriodicalIF":8.5000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.1c00466","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.1c00466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

Abstract

Photo- and electrocatalytic technologies hold great promise for activating inert chemical bonds under mild conditions, but rationally selecting a more suitable method in between to maximize the performance remains an open issue, which requires a fundamental understanding of their different catalytic mechanisms. Herein, by first-principles calculations, we systematically compare the activation mechanisms for the C–H bond of the CH4 molecule on TiO2(110) under the photo- and electrocatalytic modes without or with water involved. It quantitatively reveals that the activation barrier of the C–H bond decreases dramatically with a surprising 74% scale by photoexcitation relative to that in thermocatalysis (1.12 eV), while the barrier varies with a maximum promotion of only 5% even under −1 V/Å external electric field (EEF). By detailed geometric/electronic analysis, the superior photocatalytic activity is traced to the highly oxidative lattice Obr•– radical excited by a photohole (h+), which motivates the homolytic C–H bond scission. However, under EEF from −1 V/Å to 1 V/Å, it gives a relatively mild charge polarization on the TiO2(110) surface region and thus a limited promotion for breaking the weakly polar C–H bond. By contrast, in the presence of water, we find that EEF can facilitate CH4 activation indirectly assisted by the surface radical-like OH* species from the oxidative water cleavage at high oxidative potential (>1.85 V vs SHE), which explains the high energy cost to drive electrocatalytic CH4 conversion in experiment. Alternatively, we demonstrate that more efficient CH4 activation could be also achieved at much lower oxidative potential when integrating the light irradiation. In such a circumstance, EEF can not only promote the h+ accumulation at the catalyst surface but also help H2O deprotonation to form hydroxide, which can serve as an efficient hole-trapper to generate OH radical (OH + h+ → OH), unveiling an interesting synergistic photoelectrocatalytic effect. This work could provide a fundamental insight into the different characteristics of photo- and electrocatalysis in modulating chemical bond cleavage.

Abstract Image

优化选择光催化和电催化以促进TiO2(110)表面上的CH4活化:局部光激发与全局电场极化
光催化和电催化技术在温和条件下激活惰性化学键方面具有很大的前景,但在两者之间合理选择更合适的方法以最大化性能仍然是一个悬而未决的问题,这需要对它们不同的催化机制有基本的了解。本文通过第一性原理计算,系统地比较了TiO2(110)上CH4分子的C-H键在光催化和电催化两种模式下的活化机理。定量结果表明,与热催化(1.12 eV)相比,光激发作用下C-H键的激活势垒显著降低了74%,而在−1 V/Å外加电场(EEF)下,C-H键的激活势垒的最大提升幅度仅为5%。通过详细的几何/电子分析,优异的光催化活性可以追溯到光空穴(h+)激发的高度氧化的晶格Obr•-自由基,它激发了C-H键的均裂。然而,在−1 V/Å ~ 1 V/Å的EEF范围内,TiO2(110)表面的电荷极化相对较弱,因此对破坏弱极性的C-H键的促进作用有限。相比之下,在有水存在的情况下,我们发现EEF可以在高氧化电位(>1.85 V vs SHE)下通过氧化水裂解产生的表面自由基样OH*间接促进CH4的活化,这解释了实验中驱动电催化CH4转化的高能量成本。另外,我们证明,当整合光照射时,在更低的氧化电位下也可以实现更有效的CH4活化。在这种情况下,EEF不仅可以促进h+在催化剂表面的积累,还可以帮助H2O脱质子形成氢氧根,氢氧根可以作为一个有效的空穴捕集剂生成OH•自由基(OH - + h+→OH•),揭示了一个有趣的协同光电催化效应。这项工作可以为了解光催化和电催化在调节化学键解理方面的不同特性提供基本的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信