Enhancing daily rainfall prediction in urban areas: a comparative study of hybrid artificial intelligence models with optimization algorithms

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Yaser Sheikhi, Seyed Mohammad Ashrafi, Mohammad Reza Nikoo, Ali Haghighi
{"title":"Enhancing daily rainfall prediction in urban areas: a comparative study of hybrid artificial intelligence models with optimization algorithms","authors":"Yaser Sheikhi,&nbsp;Seyed Mohammad Ashrafi,&nbsp;Mohammad Reza Nikoo,&nbsp;Ali Haghighi","doi":"10.1007/s13201-023-02036-8","DOIUrl":null,"url":null,"abstract":"<div><p>Forecasting precipitation is a crucial input to hydrological models and hydrological event management. Accurate forecasts minimize the impact of extreme events on communities and infrastructure by providing timely and reliable information. In this study, six artificial intelligent hybrid models are developed to predict daily rainfall in urban areas by combining the firefly optimization algorithm (FA), invasive weed optimization algorithm (IWO), genetic particle swarm optimization algorithm (GAPSO), neural network (ANN), group method of data handling (GMDH), and wavelet transformation. Optimization algorithms increase forecasting accuracy by controlling all stages. A variety of criteria are used for validating the models, including correlation coefficient (<i>R</i>), root-mean-square error (RMSE), mean absolute error (MAE), critical success index (CSI), probability of detection (POD), and false alarm ratio (FAR). The proposed models are also evaluated in an urban area in Ahvaz, Iran. The GAPSO-Wavelet-ANN model is superior to other models for predicting daily rainfall, with an RMSE of 1.42 mm and an <i>R</i> of 0.9715.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"13 12","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-023-02036-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-023-02036-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Forecasting precipitation is a crucial input to hydrological models and hydrological event management. Accurate forecasts minimize the impact of extreme events on communities and infrastructure by providing timely and reliable information. In this study, six artificial intelligent hybrid models are developed to predict daily rainfall in urban areas by combining the firefly optimization algorithm (FA), invasive weed optimization algorithm (IWO), genetic particle swarm optimization algorithm (GAPSO), neural network (ANN), group method of data handling (GMDH), and wavelet transformation. Optimization algorithms increase forecasting accuracy by controlling all stages. A variety of criteria are used for validating the models, including correlation coefficient (R), root-mean-square error (RMSE), mean absolute error (MAE), critical success index (CSI), probability of detection (POD), and false alarm ratio (FAR). The proposed models are also evaluated in an urban area in Ahvaz, Iran. The GAPSO-Wavelet-ANN model is superior to other models for predicting daily rainfall, with an RMSE of 1.42 mm and an R of 0.9715.

加强城市地区日降雨量预测:混合人工智能模型与优化算法的比较研究
降水预报是水文模型和水文事件管理的重要输入。准确的预测通过提供及时可靠的信息,将极端事件对社区和基础设施的影响降至最低。本研究将萤火虫优化算法(FA)、入侵杂草优化算法(IWO)、遗传粒子群优化算法(GAPSO)、神经网络(ANN)、数据处理分组法(GMDH)和小波变换相结合,建立了六个人工智能混合模型来预测城市地区的日降雨量。优化算法通过控制所有阶段来提高预测精度。各种标准用于验证模型,包括相关系数(R)、均方根误差(RMSE)、平均绝对误差(MAE)、关键成功指数(CSI)、检测概率(POD)和虚警率(FAR)。所提出的模型也在伊朗阿瓦兹的一个城市地区进行了评估。在预测日降雨量方面,GAPSO小波神经网络模型优于其他模型,其均方根误差为1.42mm,R为0.9715。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信