Thomas A. J. Janssen, Matthew W. Jones, Declan Finney, Guido R. van der Werf, Dave van Wees, Wenxuan Xu, Sander Veraverbeke
{"title":"Extratropical forests increasingly at risk due to lightning fires","authors":"Thomas A. J. Janssen, Matthew W. Jones, Declan Finney, Guido R. van der Werf, Dave van Wees, Wenxuan Xu, Sander Veraverbeke","doi":"10.1038/s41561-023-01322-z","DOIUrl":null,"url":null,"abstract":"Fires can be ignited by people or by natural causes, which are almost exclusively lightning strikes. Discriminating between lightning and anthropogenic fires is paramount when estimating impacts of changing socioeconomic and climatological conditions on fire activity. Here we use reference data of fire ignition locations, cause and burned area from seven world regions in a machine-learning approach to obtain a global attribution of lightning and anthropogenic ignitions as dominant fire ignition sources. We show that 77% (uncertainty expressed as one standard deviation = 8%) of the burned area in extratropical intact forests currently stems from lightning and that these areas will probably experience 11 to 31% more lightning per degree warming. Extratropical forests are of global importance for carbon storage. They currently experience high fire-related forest losses and have, per unit area, among the largest fire emissions on Earth. Future increases in lightning in intact forest may therefore compound the positive feedback loop between climate change and extratropical wildfires. Lightning-induced fires account for 77% of the burned area in extratropical intact forests, and lightning ignitions will probably become more frequent as the global climate warms, according to a global attribution of lightning and anthropogenic fires from 2001 to 2020.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"16 12","pages":"1136-1144"},"PeriodicalIF":15.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41561-023-01322-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-023-01322-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fires can be ignited by people or by natural causes, which are almost exclusively lightning strikes. Discriminating between lightning and anthropogenic fires is paramount when estimating impacts of changing socioeconomic and climatological conditions on fire activity. Here we use reference data of fire ignition locations, cause and burned area from seven world regions in a machine-learning approach to obtain a global attribution of lightning and anthropogenic ignitions as dominant fire ignition sources. We show that 77% (uncertainty expressed as one standard deviation = 8%) of the burned area in extratropical intact forests currently stems from lightning and that these areas will probably experience 11 to 31% more lightning per degree warming. Extratropical forests are of global importance for carbon storage. They currently experience high fire-related forest losses and have, per unit area, among the largest fire emissions on Earth. Future increases in lightning in intact forest may therefore compound the positive feedback loop between climate change and extratropical wildfires. Lightning-induced fires account for 77% of the burned area in extratropical intact forests, and lightning ignitions will probably become more frequent as the global climate warms, according to a global attribution of lightning and anthropogenic fires from 2001 to 2020.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.