Jhedmar Callupe Luna, Juan Martinez Rocha, Eric Monacelli, Lorentz Dutrievoz, Stephane Delaplace, Yasuhisa Hirata
{"title":"Volting, a Novel Dancing Wheelchair with Augmented Mobility: Pushing Lateral Inclinations.","authors":"Jhedmar Callupe Luna, Juan Martinez Rocha, Eric Monacelli, Lorentz Dutrievoz, Stephane Delaplace, Yasuhisa Hirata","doi":"10.1109/ICORR58425.2023.10304755","DOIUrl":null,"url":null,"abstract":"<p><p>Wheelchair users are often perceived as someone ill and who will be limited in performing daily activities. This paradigm can be changed if instead to focus on limits, we start to think about the new possibilities that could be explored from their current mobility and technology. We present a novel dancing wheelchair with augmented mobility named Volting. Our novel wheelchair was designed to tilt the seat laterally up to 14°. This inclination is performed proportionally to the inclination of the user by a mechanism based on passive suspensions. Our system was analyzed as a double inverted pendulum and a mathematical model was developed using Euler-Lagrange equations. This analysis was used to calculate the ideal stiffness. Thus, we performed experiments with three distinct stiffness values and varying the weight of participants to analyze the behavior of our mechanism. Our results show that lateral inclinations in our wheelchair can be unstable, low sensitivity or linear tendency. The latter behavior, which is the most appropriate, was obtained using the suspension whose stiffness was close to the ideal value, thus validating our mathematical approach. Moreover, this behavior was maintained even if the user weight varies up to 10kg above the estimated value, ensuring a good performance for varying morphologies. Finally, our device was tested by a professional wheelchair dancer who shows the new possibilities of Volting in terms of mobility.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wheelchair users are often perceived as someone ill and who will be limited in performing daily activities. This paradigm can be changed if instead to focus on limits, we start to think about the new possibilities that could be explored from their current mobility and technology. We present a novel dancing wheelchair with augmented mobility named Volting. Our novel wheelchair was designed to tilt the seat laterally up to 14°. This inclination is performed proportionally to the inclination of the user by a mechanism based on passive suspensions. Our system was analyzed as a double inverted pendulum and a mathematical model was developed using Euler-Lagrange equations. This analysis was used to calculate the ideal stiffness. Thus, we performed experiments with three distinct stiffness values and varying the weight of participants to analyze the behavior of our mechanism. Our results show that lateral inclinations in our wheelchair can be unstable, low sensitivity or linear tendency. The latter behavior, which is the most appropriate, was obtained using the suspension whose stiffness was close to the ideal value, thus validating our mathematical approach. Moreover, this behavior was maintained even if the user weight varies up to 10kg above the estimated value, ensuring a good performance for varying morphologies. Finally, our device was tested by a professional wheelchair dancer who shows the new possibilities of Volting in terms of mobility.