Optimizing Trajectories and Inverse Kinematics for Biomechanical Analysis of Markerless Motion Capture Data.

R James Cotton, Allison DeLillo, Anthony Cimorelli, Kunal Shah, J D Peiffer, Shawana Anarwala, Kayan Abdou, Tasos Karakostas
{"title":"Optimizing Trajectories and Inverse Kinematics for Biomechanical Analysis of Markerless Motion Capture Data.","authors":"R James Cotton, Allison DeLillo, Anthony Cimorelli, Kunal Shah, J D Peiffer, Shawana Anarwala, Kayan Abdou, Tasos Karakostas","doi":"10.1109/ICORR58425.2023.10304683","DOIUrl":null,"url":null,"abstract":"<p><p>Markerless motion capture using computer vision and human pose estimation (HPE) has the potential to expand access to precise movement analysis. This could greatly benefit rehabilitation by enabling more accurate tracking of outcomes and providing more sensitive tools for research. There are numerous steps between obtaining videos to extracting accurate biomechanical results and limited research to guide many critical design decisions in these pipelines. In this work, we analyze several of these steps including the algorithm used to detect keypoints and the keypoint set, the approach to reconstructing trajectories for biomechanical inverse kinematics and optimizing the IK process. Several features we find important are: 1) using a recent algorithm trained on many datasets that produces a dense set of biomechanically-motivated keypoints, 2) using an implicit representation to reconstruct smooth, anatomically constrained marker trajectories for IK, 3) iteratively optimizing the biomechanical model to match the dense markers, 4) appropriate regularization of the IK process. Our pipeline makes it easy to obtain accurate biomechanical estimates of movement in a rehabilitation hospital.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Markerless motion capture using computer vision and human pose estimation (HPE) has the potential to expand access to precise movement analysis. This could greatly benefit rehabilitation by enabling more accurate tracking of outcomes and providing more sensitive tools for research. There are numerous steps between obtaining videos to extracting accurate biomechanical results and limited research to guide many critical design decisions in these pipelines. In this work, we analyze several of these steps including the algorithm used to detect keypoints and the keypoint set, the approach to reconstructing trajectories for biomechanical inverse kinematics and optimizing the IK process. Several features we find important are: 1) using a recent algorithm trained on many datasets that produces a dense set of biomechanically-motivated keypoints, 2) using an implicit representation to reconstruct smooth, anatomically constrained marker trajectories for IK, 3) iteratively optimizing the biomechanical model to match the dense markers, 4) appropriate regularization of the IK process. Our pipeline makes it easy to obtain accurate biomechanical estimates of movement in a rehabilitation hospital.

用于无标记运动捕捉数据生物力学分析的轨迹优化和反向运动学。
使用计算机视觉和人体姿态估计(HPE)的无标记运动捕捉有可能扩大精确运动分析的范围。这可以通过更准确地跟踪结果和提供更敏感的研究工具,极大地有利于康复。从获得视频到提取准确的生物力学结果,再到指导这些管道中许多关键设计决策的有限研究,需要许多步骤。在这项工作中,我们分析了其中的几个步骤,包括用于检测关键点和关键点集的算法、重建生物力学逆运动学轨迹的方法以及优化IK过程。我们发现几个重要的特征是:1)使用在许多数据集上训练的最新算法,该算法生成一组密集的生物力学驱动关键点,2)使用隐式表示来重建IK的平滑、解剖学约束的标记轨迹,3)迭代优化生物力学模型以匹配密集的标记,4)IK过程的适当正则化。我们的管道可以很容易地在康复医院获得准确的运动生物力学估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信