Anna Bucchieri, Federico Tessari, Stefano Buccelli, Giacinto Barresi, Elena De Momi, Matteo Laffranchi, Lorenzo De Michieli
{"title":"Human-Centered Functional Task Design for Robotic Upper-Limb Rehabilitation.","authors":"Anna Bucchieri, Federico Tessari, Stefano Buccelli, Giacinto Barresi, Elena De Momi, Matteo Laffranchi, Lorenzo De Michieli","doi":"10.1109/ICORR58425.2023.10304738","DOIUrl":null,"url":null,"abstract":"<p><p>Robotic rehabilitation has demonstrated slight positive effects compared to traditional care, but there is still a lack of targeted high-level control strategies in the current state-of-the-art for minimizing pathological motor behaviors. In this study, we analyzed upper-limb motion capture data from healthy subjects performing a pick-and-place task to identify task-specific variability in postural patterns. The results revealed consistent behaviors among subjects, presenting an opportunity to develop a novel extraction method for variable volume references based solely on observations from healthy individuals. These human-centered references were tested on a simulated 4 degrees-of-freedom upper-limb exoskeleton, showing its compliant adaptation to the path considering the variance in healthy subjects' motor behavior.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Robotic rehabilitation has demonstrated slight positive effects compared to traditional care, but there is still a lack of targeted high-level control strategies in the current state-of-the-art for minimizing pathological motor behaviors. In this study, we analyzed upper-limb motion capture data from healthy subjects performing a pick-and-place task to identify task-specific variability in postural patterns. The results revealed consistent behaviors among subjects, presenting an opportunity to develop a novel extraction method for variable volume references based solely on observations from healthy individuals. These human-centered references were tested on a simulated 4 degrees-of-freedom upper-limb exoskeleton, showing its compliant adaptation to the path considering the variance in healthy subjects' motor behavior.