A Case Series in Position-Aware Myoelectric Prosthesis Control Using Recurrent Convolutional Neural Network Classification with Transfer Learning.

Heather E Williams, Jacqueline S Hebert, Patrick M Pilarski, Ahmed W Shehata
{"title":"A Case Series in Position-Aware Myoelectric Prosthesis Control Using Recurrent Convolutional Neural Network Classification with Transfer Learning.","authors":"Heather E Williams, Jacqueline S Hebert, Patrick M Pilarski, Ahmed W Shehata","doi":"10.1109/ICORR58425.2023.10304787","DOIUrl":null,"url":null,"abstract":"<p><p>Position-aware myoelectric prosthesis controllers require long, data-intensive training routines. Transfer Learning (TL) might reduce training burden. A TL model can be pre-trained using forearm muscle signal data from many individuals to become the starting point for a new user. A recurrent convolutional neural network (RCNN)-based classifier has already been shown to benefit from TL in offline analysis (95% accuracy). The present real-time study tested whether an RCNN-based classification controller with TL (RCNN-TL) could reduce training burden, offer improved device control (per functional task performance metrics), and mitigate what is known as the \"limb position effect\". 27 participants without amputation were recruited. 19 participants performed wrist/hand movements across multiple limb positions, with resulting forearm muscle signal data used to pre-train RCNN-TL. 8 other participants donned a simulated prosthesis, retrained (calibrated) and tested RCNN-TL, plus trained and tested a conventional linear discriminant analysis classification controller (LDA-Baseline). Results confirmed that TL reduces user training burden. RCNN-TL yielded improved task performance durations over LDA-Baseline (in specific Grasp and Release phases), yet other metrics worsened. Overall, this work contributes training condition factors necessary for TL success, identifies metrics needed for comprehensive control analysis, and contributes insights towards improved position-aware control.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Position-aware myoelectric prosthesis controllers require long, data-intensive training routines. Transfer Learning (TL) might reduce training burden. A TL model can be pre-trained using forearm muscle signal data from many individuals to become the starting point for a new user. A recurrent convolutional neural network (RCNN)-based classifier has already been shown to benefit from TL in offline analysis (95% accuracy). The present real-time study tested whether an RCNN-based classification controller with TL (RCNN-TL) could reduce training burden, offer improved device control (per functional task performance metrics), and mitigate what is known as the "limb position effect". 27 participants without amputation were recruited. 19 participants performed wrist/hand movements across multiple limb positions, with resulting forearm muscle signal data used to pre-train RCNN-TL. 8 other participants donned a simulated prosthesis, retrained (calibrated) and tested RCNN-TL, plus trained and tested a conventional linear discriminant analysis classification controller (LDA-Baseline). Results confirmed that TL reduces user training burden. RCNN-TL yielded improved task performance durations over LDA-Baseline (in specific Grasp and Release phases), yet other metrics worsened. Overall, this work contributes training condition factors necessary for TL success, identifies metrics needed for comprehensive control analysis, and contributes insights towards improved position-aware control.

位置感知肌电假体控制中的一个案例系列,使用带有迁移学习的递归卷积神经网络分类。
位置感知肌电假肢控制器需要长时间的、数据密集型的训练程序。迁移学习(TL)可以减轻培训负担。TL模型可以使用来自许多个人的前臂肌肉信号数据进行预训练,以成为新用户的起点。基于递归卷积神经网络(RCNN)的分类器已经被证明在离线分析中受益于TL(95%的准确率)。本实时研究测试了带有TL的基于RCNN的分类控制器(RCNN-TL)是否可以减轻训练负担,提供改进的设备控制(每个功能任务的性能指标),并减轻所谓的“肢体位置效应”。招募了27名未截肢的参与者。19名参与者在多个肢体位置进行手腕/手部运动,所得前臂肌肉信号数据用于预训练RCNN-TL。其他8名参与者戴上模拟假体,重新训练(校准)并测试RCNN-TL,再加上训练和测试传统的线性判别分析分类控制器(LDA-Baseline)。结果证实TL减轻了用户的培训负担。RCNN-TL的任务性能持续时间比LDA基线有所改善(在特定的抓握和释放阶段),但其他指标则有所恶化。总的来说,这项工作为TL的成功提供了必要的训练条件因素,确定了全面控制分析所需的指标,并为改进位置感知控制提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信