{"title":"Role of Nrf2 signaling in development of hepatocyte-like cells.","authors":"Chie Takasu, Shuhai Chen, Luping Gao, Yu Saito, Yuji Morine, Tetsuya Ikemoto, Shinichiro Yamada, Mitsu Shimad","doi":"10.2152/jmi.70.343","DOIUrl":null,"url":null,"abstract":"<p><p>Generation of hepatocytes from human adipose-derived mesenchymal stem cells (hADSCs) could be a promising alternative source of human hepatocytes. However, mechanisms to differentiate hepatocytes from hADSCs are not fully elucidated. We have previously demonstrated that our three-step differentiation protocol with glycogen synthase kinase (GSK) 3 inhibitor was effective to improve hepatocyte functions. In this study, we investigated the activation of the nuclear factor erythroid-2 related factor 2 (Nrf2) on hADSCs undergoing differentiation to HLC (hepatocyte-like cells). Our three-step differentiation protocol was applied for 21 days (Step 1:day 1-6, Step2:day 6-11, Step3:day 11-21). Our results show that significant nuclear translocation of Nrf2 occurred from day 11 until the end of HLC differentiation. Nuclear translocation of Nrf2 and CYP3A4 activity in the GSK3 inhibitor-treated group was obviously higher than that in Activin A-treated groups at day 11. The maturation of HLCs was delayed in Nrf2-siRNA group compared to control group. Furthermore, CYP3A4 activity in Nrf2-siRNA group was decreased at the almost same level in Activin A-treated group. Nrf2 translocation might enhance the function of HLC and be a target for developing highly functional HLC. J. Med. Invest. 70 : 343-349, August, 2023.</p>","PeriodicalId":46910,"journal":{"name":"JOURNAL OF MEDICAL INVESTIGATION","volume":"70 3.4","pages":"343-349"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF MEDICAL INVESTIGATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2152/jmi.70.343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Generation of hepatocytes from human adipose-derived mesenchymal stem cells (hADSCs) could be a promising alternative source of human hepatocytes. However, mechanisms to differentiate hepatocytes from hADSCs are not fully elucidated. We have previously demonstrated that our three-step differentiation protocol with glycogen synthase kinase (GSK) 3 inhibitor was effective to improve hepatocyte functions. In this study, we investigated the activation of the nuclear factor erythroid-2 related factor 2 (Nrf2) on hADSCs undergoing differentiation to HLC (hepatocyte-like cells). Our three-step differentiation protocol was applied for 21 days (Step 1:day 1-6, Step2:day 6-11, Step3:day 11-21). Our results show that significant nuclear translocation of Nrf2 occurred from day 11 until the end of HLC differentiation. Nuclear translocation of Nrf2 and CYP3A4 activity in the GSK3 inhibitor-treated group was obviously higher than that in Activin A-treated groups at day 11. The maturation of HLCs was delayed in Nrf2-siRNA group compared to control group. Furthermore, CYP3A4 activity in Nrf2-siRNA group was decreased at the almost same level in Activin A-treated group. Nrf2 translocation might enhance the function of HLC and be a target for developing highly functional HLC. J. Med. Invest. 70 : 343-349, August, 2023.