Age influences the specific force and fatigability of the external abdominal obliques but not pectoralis major muscles

IF 1.9 4区 医学 Q3 PHYSIOLOGY
Matthew J. Fogarty
{"title":"Age influences the specific force and fatigability of the external abdominal obliques but not pectoralis major muscles","authors":"Matthew J. Fogarty","doi":"10.1016/j.resp.2023.104187","DOIUrl":null,"url":null,"abstract":"<div><p>In the elderly, airway infections are associated with impaired airway defense behaviors, leading to an increased risk of airway infection. The muscles of the chest and abdominal wall are essential for performing effective airway defense manoeuvres, however, very little is known about their function in aging. Here in the 6- and 24-months old Fischer 344 rat model of aging, we assess the contractility and fatigability of chest (the pectoralis major muscle) and abdominal wall (external abdominal oblique) muscles. We assessed muscle function using an ex vivo approach, measuring isometric specific forces normalised to muscle CSA, via a platinum plate field stimulations at a range of frequencies (5–150 Hz) for 1 s. Surprisingly, we did not observe any effect of age on the specific force and fatigue properties of the pectoral muscle. However, in 24-months old rats, EAO specific force was reduced by ∼32 %. These finding suggest that not all respiratory muscles are equally vulnerable to age-associated weakness.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904823001751","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the elderly, airway infections are associated with impaired airway defense behaviors, leading to an increased risk of airway infection. The muscles of the chest and abdominal wall are essential for performing effective airway defense manoeuvres, however, very little is known about their function in aging. Here in the 6- and 24-months old Fischer 344 rat model of aging, we assess the contractility and fatigability of chest (the pectoralis major muscle) and abdominal wall (external abdominal oblique) muscles. We assessed muscle function using an ex vivo approach, measuring isometric specific forces normalised to muscle CSA, via a platinum plate field stimulations at a range of frequencies (5–150 Hz) for 1 s. Surprisingly, we did not observe any effect of age on the specific force and fatigue properties of the pectoral muscle. However, in 24-months old rats, EAO specific force was reduced by ∼32 %. These finding suggest that not all respiratory muscles are equally vulnerable to age-associated weakness.

年龄影响腹部外斜肌的比力和疲劳性,但不影响胸大肌。
在老年人中,气道感染与气道防御行为受损有关,导致气道感染风险增加。胸部和腹壁的肌肉对进行有效的气道防御至关重要,然而,人们对它们在衰老中的功能知之甚少。在6个月和24个月大的Fischer 344大鼠衰老模型中,我们评估了胸部(胸大肌)和腹壁(腹外斜肌)的收缩性和疲劳性。我们使用离体方法评估肌肉功能,通过在频率范围(5-150Hz)下进行1s的铂板场刺激,测量标准化为肌肉CSA的等长比力。令人惊讶的是,我们没有观察到年龄对胸肌的比力和疲劳特性的任何影响。然而,在24个月大的大鼠中,EAO特异性力降低了约32%。这些发现表明,并非所有的呼吸肌都同样容易受到年龄相关虚弱的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
8.70%
发文量
104
审稿时长
54 days
期刊介绍: Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense. Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as: -Mechanics of breathing- Gas exchange and acid-base balance- Respiration at rest and exercise- Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen- Embryonic and adult respiration- Comparative respiratory physiology. Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信