Dietary Ferulic Acid-Mediated Suppression of Fat Deposits Is Associated with Induction of Beige Adipocyte Formation and Thermogenesis in Inguinal White Adipose Tissue in Mice.
{"title":"Dietary Ferulic Acid-Mediated Suppression of Fat Deposits Is Associated with Induction of Beige Adipocyte Formation and Thermogenesis in Inguinal White Adipose Tissue in Mice.","authors":"Junpei Tanaka, Takanori Tsuda","doi":"10.3177/jnsv.69.377","DOIUrl":null,"url":null,"abstract":"<p><p>Ferulic acid (FA) is the most abundant phenolic acid in wheat grains. Recent studies have reported that FA intake significantly suppresses body weight gain and accumulation of fat deposits in mice. However, the mechanism by which FA intake affects body fat accumulation remains unclear. We hypothesized that dietary FA induces the formation of beige adipocytes and contributes to the suppression of body fat accumulation. In this study, we investigated whether dietary FA significantly induces beige adipocyte formation and thermogenesis in mice. We found that intake of dietary FA (control diet supplemented with 10 g of FA/kg diet) for 4 wk significantly decreased white adipose tissue (WAT) deposits and body weight gain and significantly induced beige adipocyte formation in inguinal WAT (iWAT) in mice. Furthermore, dietary FA specifically induced thermogenesis in iWAT, dependent upon the significant induction of uncoupling protein 1 expression. These findings suggest that the dietary FA-mediated reduction of WAT accumulation and body weight gain is associated with the induction of beige adipocyte formation and thermogenesis in iWAT, which increases energy expenditure. Our study presents a novel example of dietary FA intake-mediated bioactivity as a functional food-derived factor.</p>","PeriodicalId":16624,"journal":{"name":"Journal of nutritional science and vitaminology","volume":"69 5","pages":"377-381"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nutritional science and vitaminology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3177/jnsv.69.377","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ferulic acid (FA) is the most abundant phenolic acid in wheat grains. Recent studies have reported that FA intake significantly suppresses body weight gain and accumulation of fat deposits in mice. However, the mechanism by which FA intake affects body fat accumulation remains unclear. We hypothesized that dietary FA induces the formation of beige adipocytes and contributes to the suppression of body fat accumulation. In this study, we investigated whether dietary FA significantly induces beige adipocyte formation and thermogenesis in mice. We found that intake of dietary FA (control diet supplemented with 10 g of FA/kg diet) for 4 wk significantly decreased white adipose tissue (WAT) deposits and body weight gain and significantly induced beige adipocyte formation in inguinal WAT (iWAT) in mice. Furthermore, dietary FA specifically induced thermogenesis in iWAT, dependent upon the significant induction of uncoupling protein 1 expression. These findings suggest that the dietary FA-mediated reduction of WAT accumulation and body weight gain is associated with the induction of beige adipocyte formation and thermogenesis in iWAT, which increases energy expenditure. Our study presents a novel example of dietary FA intake-mediated bioactivity as a functional food-derived factor.
期刊介绍:
The Journal of Nutritional Science and Vitaminology is an international medium publishing in English of original work in all branches of nutritional science, food science and vitaminology from any country.
Manuscripts submitted for publication should be as concise as possible and must be based on the results of original research or of original interpretation of existing knowledge not previously published. Although data may have been reported, in part, in preliminary or
abstract form, a full report of such research is unacceptable if it has been or will be submitted for consideration by another journal.