Seyed Mohammad Rasouli-Nejad Mousavi, Seyed Masoud Hosseini, Samira Ansari
{"title":"Evaluating the viral clearance ability of continuous monoclonal antibody purification steps, in order to inactivate and/or remove four model viruses.","authors":"Seyed Mohammad Rasouli-Nejad Mousavi, Seyed Masoud Hosseini, Samira Ansari","doi":"10.18502/ijm.v15i5.13877","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Viral clearance studies are an essential part of a manufacturer's plan to ensure the safety of an injectable biologic product. In this way, viral safety is a critical quality attribute for biologics such as monoclonal antibodies (Mabs). Evaluation of virus purification by downstream processes is a key component of risk mitigation. In this study, the capability of continuous monoclonal antibody purification steps was evaluated in the process of instant monoclonal antibody purification in different stages of purification, and the amount of reduction or inactivation of each step was determined.</p><p><strong>Materials and methods: </strong>Four enveloped and non-enveloped viral models VSV, Reovirus, EMCV, and HSV1 were used for spiking in selected samples in the designated tests, to have a comprehensive examination of the ability to clear the virus such as the type of genetic material, chemical resistance, and particle size. A TCID<sub>50</sub> and qPCR methods were used to measure viral reduction. Two cell lines, Vero (African green monkey kidney) and L929 (Mouse fibroblast) were used for 4 model viruses propagation. The steps that were evaluated included 4 steps monoclonal antibody purification; cation exchange chromatography, acidic pH treatment, affinity chromatography, and nanofiltration.</p><p><strong>Results: </strong>The nano-filter stage showed the highest viral reduction and cation exchange chromatography showed the lowest reduction. The cumulative decrease using TCID<sub>50</sub> is equal to 19.27 [log10] for all steps and for the qPCR method is equal to 12.47 [log10] in three steps of nano-filter, affinity chromatography, and ion exchange chromatography.</p><p><strong>Conclusion: </strong>The overall average reduction coefficient for all four model viruses is significantly high, which indicates the high capacity of the monoclonal antibody production process in inactivating and removing viruses leads to reducing the load of all four model viruses.</p>","PeriodicalId":14633,"journal":{"name":"Iranian Journal of Microbiology","volume":"15 5","pages":"711-722"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ijm.v15i5.13877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objectives: Viral clearance studies are an essential part of a manufacturer's plan to ensure the safety of an injectable biologic product. In this way, viral safety is a critical quality attribute for biologics such as monoclonal antibodies (Mabs). Evaluation of virus purification by downstream processes is a key component of risk mitigation. In this study, the capability of continuous monoclonal antibody purification steps was evaluated in the process of instant monoclonal antibody purification in different stages of purification, and the amount of reduction or inactivation of each step was determined.
Materials and methods: Four enveloped and non-enveloped viral models VSV, Reovirus, EMCV, and HSV1 were used for spiking in selected samples in the designated tests, to have a comprehensive examination of the ability to clear the virus such as the type of genetic material, chemical resistance, and particle size. A TCID50 and qPCR methods were used to measure viral reduction. Two cell lines, Vero (African green monkey kidney) and L929 (Mouse fibroblast) were used for 4 model viruses propagation. The steps that were evaluated included 4 steps monoclonal antibody purification; cation exchange chromatography, acidic pH treatment, affinity chromatography, and nanofiltration.
Results: The nano-filter stage showed the highest viral reduction and cation exchange chromatography showed the lowest reduction. The cumulative decrease using TCID50 is equal to 19.27 [log10] for all steps and for the qPCR method is equal to 12.47 [log10] in three steps of nano-filter, affinity chromatography, and ion exchange chromatography.
Conclusion: The overall average reduction coefficient for all four model viruses is significantly high, which indicates the high capacity of the monoclonal antibody production process in inactivating and removing viruses leads to reducing the load of all four model viruses.
期刊介绍:
The Iranian Journal of Microbiology (IJM) is an international, multi-disciplinary, peer-reviewed journal that provides rapid publication of the most advanced scientific research in the areas of basic and applied research on bacteria and other micro-organisms, including bacteria, viruses, yeasts, fungi, microalgae, and protozoa concerning the development of tools for diagnosis and disease control, epidemiology, antimicrobial agents, clinical microbiology, immunology, Genetics, Genomics and Molecular Biology. Contributions may be in the form of original research papers, review articles, short communications, case reports, technical reports, and letters to the Editor. Research findings must be novel and the original data must be available for review by the Editors, if necessary. Studies that are preliminary, of weak originality or merely descriptive as well as negative results are not appropriate for the journal. Papers considered for publication must be unpublished work (except in an abstract form) that is not under consideration for publication anywhere else, and all co-authors should have agreed to the submission. Manuscripts should be written in English.