Drug–ionic surfactant interactions: density, sound speed, spectroscopic, and electrochemical studies

IF 2.2 4区 生物学 Q3 BIOPHYSICS
Muhammad Sohail, Hafiz Muhammad Abd Ur Rahman, Muhammad Nadeem Asghar
{"title":"Drug–ionic surfactant interactions: density, sound speed, spectroscopic, and electrochemical studies","authors":"Muhammad Sohail,&nbsp;Hafiz Muhammad Abd Ur Rahman,&nbsp;Muhammad Nadeem Asghar","doi":"10.1007/s00249-023-01689-2","DOIUrl":null,"url":null,"abstract":"<div><p>The failure of antibiotics against infectious diseases has become a global health issue due to the incessant use of antibiotics in the community and a lack of entry of new antibacterial drugs onto the market. The limited knowledge of biophysical interactions of existing antibiotics with bio-membranes is one of the major hurdles to design and develop more effective antibiotics. Surfactant systems are the simplest biological membrane models that not only mimic the cell membrane functions but are also used to investigate the biophysical interactions between pharmaceutical drugs and bio-membranes at the molecular level. In this work, volumetric and acoustic studies were used to investigate the molecular interactions of moxifloxacin (MXF), a potential antibacterial drug, with ionic surfactants (dodecyl-tri-methyl-ammonium bromide (DTAB), a cationic surfactant and sodium dodecyl sulfate (SDS), an anionic surfactant) under physiological conditions (phosphate buffer, pH 7.4) at <i>T</i> = 298.15–313.15 K at an interval of 5 K. Various volumetric and acoustic parameters were computed from the density and sound speed data and interpreted in terms of MXF–ionic surfactant interaction using electrostriction effect and co-sphere overlap model. Absorption spectroscopy and cyclic voltammetry were further used to determine the binding, partitioning, and related free energies of MXF with ionic micelles.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 8","pages":"735 - 747"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-023-01689-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The failure of antibiotics against infectious diseases has become a global health issue due to the incessant use of antibiotics in the community and a lack of entry of new antibacterial drugs onto the market. The limited knowledge of biophysical interactions of existing antibiotics with bio-membranes is one of the major hurdles to design and develop more effective antibiotics. Surfactant systems are the simplest biological membrane models that not only mimic the cell membrane functions but are also used to investigate the biophysical interactions between pharmaceutical drugs and bio-membranes at the molecular level. In this work, volumetric and acoustic studies were used to investigate the molecular interactions of moxifloxacin (MXF), a potential antibacterial drug, with ionic surfactants (dodecyl-tri-methyl-ammonium bromide (DTAB), a cationic surfactant and sodium dodecyl sulfate (SDS), an anionic surfactant) under physiological conditions (phosphate buffer, pH 7.4) at T = 298.15–313.15 K at an interval of 5 K. Various volumetric and acoustic parameters were computed from the density and sound speed data and interpreted in terms of MXF–ionic surfactant interaction using electrostriction effect and co-sphere overlap model. Absorption spectroscopy and cyclic voltammetry were further used to determine the binding, partitioning, and related free energies of MXF with ionic micelles.

Abstract Image

药物-离子表面活性剂相互作用:密度、声速、光谱和电化学研究。
由于社区不断使用抗生素,以及缺乏新的抗菌药物进入市场,抗生素对抗传染病的失败已成为一个全球健康问题。现有抗生素与生物膜的生物物理相互作用知识有限,是设计和开发更有效抗生素的主要障碍之一。表面活性剂系统是最简单的生物膜模型,不仅模拟细胞膜功能,还用于在分子水平上研究药物和生物膜之间的生物物理相互作用。在这项工作中,使用体积和声学研究来研究潜在的抗菌药物莫西沙星(MXF)与离子表面活性剂(阳离子表面活性剂十二烷基三甲基溴化铵(DTAB)和阴离子表面活性剂12烷基硫酸钠(SDS))在生理条件下(磷酸盐缓冲液,pH 7.4)在T = 298.15-313.15K,间隔5K。根据密度和声速数据计算了各种体积和声学参数,并使用电致伸缩效应和共球重叠模型根据MXF离子-表面活性剂相互作用进行了解释。吸收光谱和循环伏安法进一步用于测定MXF与离子胶束的结合、分配和相关自由能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信