A three-dimensional quantum dot network stabilizes perovskite solids via hydrostatic strain

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-01-03 DOI:10.1016/j.matt.2023.10.015
Yuan Liu , Tong Zhu , Luke Grater , Hao Chen , Roberto dos Reis , Aidan Maxwell , Matthew Cheng , Yitong Dong , Sam Teale , Adam F.G. Leontowich , Chang-Yong Kim , Phoebe Tsz-shan Chan , Mingcong Wang , Watcharaphol Paritmongkol , Yajun Gao , So Min Park , Jian Xu , Jafar Iqbal Khan , Frédéric Laquai , Gilbert C. Walker , Edward H. Sargent
{"title":"A three-dimensional quantum dot network stabilizes perovskite solids via hydrostatic strain","authors":"Yuan Liu ,&nbsp;Tong Zhu ,&nbsp;Luke Grater ,&nbsp;Hao Chen ,&nbsp;Roberto dos Reis ,&nbsp;Aidan Maxwell ,&nbsp;Matthew Cheng ,&nbsp;Yitong Dong ,&nbsp;Sam Teale ,&nbsp;Adam F.G. Leontowich ,&nbsp;Chang-Yong Kim ,&nbsp;Phoebe Tsz-shan Chan ,&nbsp;Mingcong Wang ,&nbsp;Watcharaphol Paritmongkol ,&nbsp;Yajun Gao ,&nbsp;So Min Park ,&nbsp;Jian Xu ,&nbsp;Jafar Iqbal Khan ,&nbsp;Frédéric Laquai ,&nbsp;Gilbert C. Walker ,&nbsp;Edward H. Sargent","doi":"10.1016/j.matt.2023.10.015","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Compressive strain engineering improves perovskite<span> stability. Two-dimensional compressive strain along the in-plane direction can be applied to perovskites through the substrate; however, this in-plane strain results in an offsetting tensile strain<span> perpendicular to the substrate, linked to the positive Poisson ratio of perovskites. Substrate-induced strain engineering has not yet resulted in state-of-the-art operational stability. Here, we seek instead to implement hydrostatic strain in perovskites by embedding lattice-mismatched </span></span></span>perovskite quantum dots (QDs) into a perovskite matrix. QD-in-matrix perovskites show a homogeneously strained lattice as evidenced by grazing-incidence X-ray diffraction. We fabricate mixed-halide wide-band-gap (</span><em>E</em><sub>g</sub><span>; 1.77 eV) QD-in-matrix perovskite solar cells that maintain &gt;90% of their initial power conversion efficiency (PCE) after 200 h of one-sun operation at the maximum power point (MPP), a significant improvement relative to matrix-only devices, which lose 10% (relative) of their initial PCE after 5 h of MPP tracking.</span></p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 1","pages":"Pages 107-122"},"PeriodicalIF":17.3000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238523005167","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Compressive strain engineering improves perovskite stability. Two-dimensional compressive strain along the in-plane direction can be applied to perovskites through the substrate; however, this in-plane strain results in an offsetting tensile strain perpendicular to the substrate, linked to the positive Poisson ratio of perovskites. Substrate-induced strain engineering has not yet resulted in state-of-the-art operational stability. Here, we seek instead to implement hydrostatic strain in perovskites by embedding lattice-mismatched perovskite quantum dots (QDs) into a perovskite matrix. QD-in-matrix perovskites show a homogeneously strained lattice as evidenced by grazing-incidence X-ray diffraction. We fabricate mixed-halide wide-band-gap (Eg; 1.77 eV) QD-in-matrix perovskite solar cells that maintain >90% of their initial power conversion efficiency (PCE) after 200 h of one-sun operation at the maximum power point (MPP), a significant improvement relative to matrix-only devices, which lose 10% (relative) of their initial PCE after 5 h of MPP tracking.

Abstract Image

Abstract Image

三维量子点网络通过静水应变稳定钙钛矿固体
压缩应变工程提高了钙钛矿的稳定性。沿着平面内方向的二维压缩应变可以通过衬底施加到钙钛矿上;然而,这种平面内应变导致垂直于基底的偏移拉伸应变,这与钙钛矿的正泊松比有关。衬底诱导应变工程尚未产生最先进的操作稳定性。在这里,我们试图通过将晶格失配的钙钛矿量子点(QDs)嵌入钙钛矿基质中,在钙钛矿中实现静水应变。基体钙钛矿中的QD显示出均匀应变的晶格,如掠入射X射线衍射所证明的。我们在保持>;在最大功率点(MPP)下一次太阳操作200小时后,其初始功率转换效率(PCE)的90%,相对于仅矩阵的设备而言,这是一个显著的改进,仅矩阵的器件在MPP跟踪5小时后损失了其初始PCE的10%(相对)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信