A multivariate Riesz basis of ReLU neural networks

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Cornelia Schneider , Jan Vybíral
{"title":"A multivariate Riesz basis of ReLU neural networks","authors":"Cornelia Schneider ,&nbsp;Jan Vybíral","doi":"10.1016/j.acha.2023.101605","DOIUrl":null,"url":null,"abstract":"<div><p><span>We consider the trigonometric-like system of piecewise linear<span> functions introduced recently by Daubechies, DeVore, Foucart, Hanin, and Petrova. We provide an alternative proof that this system forms a Riesz basis of </span></span><span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>)</mo></math></span><span> based on the Gershgorin theorem. We also generalize this system to higher dimensions </span><span><math><mi>d</mi><mo>&gt;</mo><mn>1</mn></math></span> by a construction, which avoids using (tensor) products. As a consequence, the functions from the new Riesz basis of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span><span> can be easily represented by neural networks. Moreover, the Riesz constants of this system are independent of </span><em>d</em><span>, making it an attractive building block regarding future multivariate analysis of neural networks.</span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101605"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000921","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the trigonometric-like system of piecewise linear functions introduced recently by Daubechies, DeVore, Foucart, Hanin, and Petrova. We provide an alternative proof that this system forms a Riesz basis of L2([0,1]) based on the Gershgorin theorem. We also generalize this system to higher dimensions d>1 by a construction, which avoids using (tensor) products. As a consequence, the functions from the new Riesz basis of L2([0,1]d) can be easily represented by neural networks. Moreover, the Riesz constants of this system are independent of d, making it an attractive building block regarding future multivariate analysis of neural networks.

ReLU神经网络的多元Riesz基
我们考虑Daubechies、DeVore、Foucart、Hanin和Petrova最近提出的分段线性函数的类三角系统。基于Gershgorin定理,我们提供了另一个证明,证明该系统形成了L2([0,1])的Riesz基。我们还将该系统推广到更高维度d>;1通过避免使用(张量)乘积的构造。因此,L2([0,1]d)的新Riesz基的函数可以很容易地用神经网络表示。此外,该系统的Riesz常数与d无关,这使其成为未来神经网络多变量分析的一个有吸引力的构建块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信