{"title":"The de Rham–Fargues–Fontaine cohomology","authors":"Arthur-César Le Bras, Alberto Vezzani","doi":"10.2140/ant.2023.17.2097","DOIUrl":null,"url":null,"abstract":"<p>We show how to attach to any rigid analytic variety <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi> </math> over a perfectoid space <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi></math> a rigid analytic motive over the Fargues–Fontaine curve <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">𝒳</mi><mo stretchy=\"false\">(</mo><mi>P</mi><mo stretchy=\"false\">)</mo></math> functorially in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi> </math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi></math>. We combine this construction with the overconvergent relative de Rham cohomology to produce a complex of solid quasicoherent sheaves over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">𝒳</mi><mo stretchy=\"false\">(</mo><mi>P</mi><mo stretchy=\"false\">)</mo></math>, and we show that its cohomology groups are vector bundles if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi> </math> is smooth and proper over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi></math> or if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi> </math> is quasicompact and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi></math> is a perfectoid field, thus proving and generalizing a conjecture of Scholze. The main ingredients of the proofs are explicit <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"double-struck\">𝔹</mi></mrow><mrow><mn>1</mn></mrow></msup></math>-homotopies, the motivic proper base change and the formalism of solid quasicoherent sheaves. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"54 43","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.2097","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
We show how to attach to any rigid analytic variety over a perfectoid space a rigid analytic motive over the Fargues–Fontaine curve functorially in and . We combine this construction with the overconvergent relative de Rham cohomology to produce a complex of solid quasicoherent sheaves over , and we show that its cohomology groups are vector bundles if is smooth and proper over or if is quasicompact and is a perfectoid field, thus proving and generalizing a conjecture of Scholze. The main ingredients of the proofs are explicit -homotopies, the motivic proper base change and the formalism of solid quasicoherent sheaves.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.