The de Rham–Fargues–Fontaine cohomology

IF 0.9 1区 数学 Q2 MATHEMATICS
Arthur-César Le Bras, Alberto Vezzani
{"title":"The de Rham–Fargues–Fontaine cohomology","authors":"Arthur-César Le Bras, Alberto Vezzani","doi":"10.2140/ant.2023.17.2097","DOIUrl":null,"url":null,"abstract":"<p>We show how to attach to any rigid analytic variety <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi> </math> over a perfectoid space <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi></math> a rigid analytic motive over the Fargues–Fontaine curve <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">𝒳</mi><mo stretchy=\"false\">(</mo><mi>P</mi><mo stretchy=\"false\">)</mo></math> functorially in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi> </math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi></math>. We combine this construction with the overconvergent relative de Rham cohomology to produce a complex of solid quasicoherent sheaves over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">𝒳</mi><mo stretchy=\"false\">(</mo><mi>P</mi><mo stretchy=\"false\">)</mo></math>, and we show that its cohomology groups are vector bundles if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi> </math> is smooth and proper over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi></math> or if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi> </math> is quasicompact and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi></math> is a perfectoid field, thus proving and generalizing a conjecture of Scholze. The main ingredients of the proofs are explicit <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"double-struck\">𝔹</mi></mrow><mrow><mn>1</mn></mrow></msup></math>-homotopies, the motivic proper base change and the formalism of solid quasicoherent sheaves. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"54 43","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.2097","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We show how to attach to any rigid analytic variety V over a perfectoid space P a rigid analytic motive over the Fargues–Fontaine curve 𝒳(P) functorially in V and P. We combine this construction with the overconvergent relative de Rham cohomology to produce a complex of solid quasicoherent sheaves over 𝒳(P), and we show that its cohomology groups are vector bundles if V is smooth and proper over P or if V is quasicompact and P is a perfectoid field, thus proving and generalizing a conjecture of Scholze. The main ingredients of the proofs are explicit 𝔹1-homotopies, the motivic proper base change and the formalism of solid quasicoherent sheaves.

德拉姆-法格斯-方丹上同调
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信