{"title":"On self-correspondences on curves","authors":"Joël Bellaïche","doi":"10.2140/ant.2023.17.1867","DOIUrl":null,"url":null,"abstract":"<p>We study the algebraic dynamics of self-correspondences on a curve. A self-correspondence on a (proper and smooth) curve <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi></math> over an algebraically closed field is the data of another curve <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>D</mi></math> and two nonconstant separable morphisms <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub></math> from <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>D</mi></math> to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi></math>. A subset <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi></math> is <span>complete</span> if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>S</mi><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <msubsup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math>. We show that self-correspondences are divided into two classes: those that have only finitely many finite complete sets, and those for which <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi></math> is a union of finite complete sets. The latter ones are called <span>finitary</span>, and happen only when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> deg</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub>\n<mo>=</mo><mi> deg</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub></math> and have a trivial dynamics. For a nonfinitary self-correspondence in characteristic zero, we give a sharp bound for the number of étale finite complete sets. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"54 45","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1867","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the algebraic dynamics of self-correspondences on a curve. A self-correspondence on a (proper and smooth) curve over an algebraically closed field is the data of another curve and two nonconstant separable morphisms and from to . A subset of is complete if . We show that self-correspondences are divided into two classes: those that have only finitely many finite complete sets, and those for which is a union of finite complete sets. The latter ones are called finitary, and happen only when and have a trivial dynamics. For a nonfinitary self-correspondence in characteristic zero, we give a sharp bound for the number of étale finite complete sets.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.