On self-correspondences on curves

IF 0.9 1区 数学 Q2 MATHEMATICS
Joël Bellaïche
{"title":"On self-correspondences on curves","authors":"Joël Bellaïche","doi":"10.2140/ant.2023.17.1867","DOIUrl":null,"url":null,"abstract":"<p>We study the algebraic dynamics of self-correspondences on a curve. A self-correspondence on a (proper and smooth) curve <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi></math> over an algebraically closed field is the data of another curve <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>D</mi></math> and two nonconstant separable morphisms <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub></math> from <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>D</mi></math> to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi></math>. A subset <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi></math> is <span>complete</span> if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>S</mi><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <msubsup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math>. We show that self-correspondences are divided into two classes: those that have only finitely many finite complete sets, and those for which <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi></math> is a union of finite complete sets. The latter ones are called <span>finitary</span>, and happen only when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> deg</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub>\n<mo>=</mo><mi> deg</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub></math> and have a trivial dynamics. For a nonfinitary self-correspondence in characteristic zero, we give a sharp bound for the number of étale finite complete sets. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"54 45","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1867","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the algebraic dynamics of self-correspondences on a curve. A self-correspondence on a (proper and smooth) curve C over an algebraically closed field is the data of another curve D and two nonconstant separable morphisms π1 and π2 from D to C. A subset S of C is complete if π11(S) = π21(S). We show that self-correspondences are divided into two classes: those that have only finitely many finite complete sets, and those for which C is a union of finite complete sets. The latter ones are called finitary, and happen only when deg π1 = deg π2 and have a trivial dynamics. For a nonfinitary self-correspondence in characteristic zero, we give a sharp bound for the number of étale finite complete sets.

关于曲线上的自对应
我们研究了曲线上自对应的代数动力学。代数闭域上的(适当且光滑的)曲线C上的自对应是另一条曲线D和从D到C的两个非恒定可分离态射π1和π2的数据。如果π1−1(S)=π2−1(S),则C的子集S是完整的。我们证明了自对应分为两类:一类是只有有限多个有限完备集的自对应,另一类是C是有限完备集并的自对应。后一种称为有限性,只有当deg时才发生⁡ π1=度⁡ π2,并具有平凡动力学。对于特征零中的非无限自对应,我们给出了étale有限完备集的个数的一个锐界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信