On a recolouring version of Hadwiger's conjecture

IF 1.2 1区 数学 Q1 MATHEMATICS
Marthe Bonamy , Marc Heinrich , Clément Legrand-Duchesne , Jonathan Narboni
{"title":"On a recolouring version of Hadwiger's conjecture","authors":"Marthe Bonamy ,&nbsp;Marc Heinrich ,&nbsp;Clément Legrand-Duchesne ,&nbsp;Jonathan Narboni","doi":"10.1016/j.jctb.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that for any <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>, for any large enough <em>t</em>, there is a graph that admits no <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-minor but admits a <span><math><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mi>ε</mi><mo>)</mo><mi>t</mi></math></span>-colouring that is “frozen” with respect to Kempe changes, i.e. any two colour classes induce a connected component. This disproves three conjectures of Las Vergnas and Meyniel from 1981.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"164 ","pages":"Pages 364-370"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000837","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that for any ε>0, for any large enough t, there is a graph that admits no Kt-minor but admits a (32ε)t-colouring that is “frozen” with respect to Kempe changes, i.e. any two colour classes induce a connected component. This disproves three conjectures of Las Vergnas and Meyniel from 1981.

关于Hadwiger猜想的一个变色版本
我们证明了对于任何ε>;0,对于任何足够大的t,有一个图不允许Kt小调,但允许相对于Kempe变化“冻结”的(32-ε)t-染色,即任何两个色类都会诱导一个连通分量。这推翻了Las Vergnas和Meyniel 1981年的三个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信