Imperceptive and reusable dermal surface EMG for lower extremity neuro-prosthetic control and clinical assessment

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jaeu Park, Jinwoong Jeong, Minseok Kang, Nagwade Pritish, Youngjun Cho, Jeongdae Ha, Junwoo Yea, Kyung-In Jang, Hyojin Kim, Jumin Hwang, Byungchae Kim, Sungjoon Min, Hoijun Kim, Soonchul Kwon, ChangSik John Pak, HyunSuk Peter Suh, Joon Pio Hong, Sanghoon Lee
{"title":"Imperceptive and reusable dermal surface EMG for lower extremity neuro-prosthetic control and clinical assessment","authors":"Jaeu Park, Jinwoong Jeong, Minseok Kang, Nagwade Pritish, Youngjun Cho, Jeongdae Ha, Junwoo Yea, Kyung-In Jang, Hyojin Kim, Jumin Hwang, Byungchae Kim, Sungjoon Min, Hoijun Kim, Soonchul Kwon, ChangSik John Pak, HyunSuk Peter Suh, Joon Pio Hong, Sanghoon Lee","doi":"10.1038/s41528-023-00282-z","DOIUrl":null,"url":null,"abstract":"Surface electromyography (sEMG) sensors play a critical role in diagnosing muscle conditions and enabling prosthetic device control, especially for lower extremity robotic legs. However, challenges arise when utilizing such sensors on residual limbs within a silicon liner worn by amputees, where dynamic pressure, narrow space, and perspiration can negatively affect sensor performance. Existing commercial sEMG sensors and newly developed sensors are unsuitable due to size and thickness, or susceptible to damage in this environment. In this paper, our sEMG sensors are tailored for amputees wearing sockets, prioritizing breathability, durability, and reliable recording performance. By employing porous PDMS and Silbione substrates, our design achieves exceptional permeability and adhesive properties. The serpentine electrode pattern and design are optimized to improve stretchability, durability, and effective contact area, resulting in a higher signal-to-noise ratio (SNR) than conventional electrodes. Notably, our proposed sensors wirelessly enable to control of a robotic leg for amputees, demonstrating its practical feasibility and expecting to drive forward neuro-prosthetic control in the clinical research field near future.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00282-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-023-00282-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Surface electromyography (sEMG) sensors play a critical role in diagnosing muscle conditions and enabling prosthetic device control, especially for lower extremity robotic legs. However, challenges arise when utilizing such sensors on residual limbs within a silicon liner worn by amputees, where dynamic pressure, narrow space, and perspiration can negatively affect sensor performance. Existing commercial sEMG sensors and newly developed sensors are unsuitable due to size and thickness, or susceptible to damage in this environment. In this paper, our sEMG sensors are tailored for amputees wearing sockets, prioritizing breathability, durability, and reliable recording performance. By employing porous PDMS and Silbione substrates, our design achieves exceptional permeability and adhesive properties. The serpentine electrode pattern and design are optimized to improve stretchability, durability, and effective contact area, resulting in a higher signal-to-noise ratio (SNR) than conventional electrodes. Notably, our proposed sensors wirelessly enable to control of a robotic leg for amputees, demonstrating its practical feasibility and expecting to drive forward neuro-prosthetic control in the clinical research field near future.

Abstract Image

不敏感和可重复使用的真皮表面肌电图用于下肢神经假体控制和临床评估
表面肌电(sEMG)传感器在诊断肌肉状况和实现假肢设备控制方面发挥着关键作用,尤其是在下肢机器人腿方面。然而,当在截肢者佩戴的硅内衬内的残余肢体上使用这种传感器时,会出现挑战,其中动态压力、狭窄空间和汗液会对传感器性能产生负面影响。现有的商用sEMG传感器和新开发的传感器由于尺寸和厚度而不合适,或者在这种环境中容易损坏。在本文中,我们的sEMG传感器是为佩戴插座的截肢者量身定制的,优先考虑透气性、耐用性和可靠的记录性能。通过使用多孔PDMS和Silbione基底,我们的设计实现了卓越的渗透性和粘合性能。对蛇形电极图案和设计进行了优化,以提高拉伸性、耐用性和有效接触面积,从而获得比传统电极更高的信噪比(SNR)。值得注意的是,我们提出的传感器能够无线控制截肢者的机器人腿,证明了其实际可行性,并有望在不久的将来推动临床研究领域的神经假体控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信