{"title":"Compartment Models with Memory","authors":"Timothy Ginn, Lynn Schreyer","doi":"10.1137/21m1437160","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 65, Issue 3, Page 774-805, August 2023. <br/> The beauty and simplicity of compartment modeling makes it a useful approach for simulating dynamics in an amazingly wide range of applications, which are growing rapidly especially in global carbon cycling, hydrological network flows, and epidemiology and population dynamics. These contexts, however, often involve compartment-to-compartment flows that are incongruent with the conventional assumption of complete mixing that results in exponential residence times in linear models. Here we detail a general method for assigning any desired residence time distribution to a given intercompartmental flow, extending compartment modeling capability to transport operations, power-law residence times, diffusions, etc., without resorting to composite compartments, fractional calculus, or partial differential equations (PDEs) for diffusive transport. This is achieved by writing the mass exchange rate coefficients as functions of age-in-compartment as done in one of the first compartment models in 1917, at the cost of converting the usual ordinary differential equations to a system of first-order PDEs. The PDEs are readily converted to a system of integral equations for which a numerical method is devised. Example calculations demonstrate incorporation of advective lags, advective-dispersive transport, power-law residence time distributions, or diffusive domains in compartment models.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"32 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21m1437160","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Review, Volume 65, Issue 3, Page 774-805, August 2023. The beauty and simplicity of compartment modeling makes it a useful approach for simulating dynamics in an amazingly wide range of applications, which are growing rapidly especially in global carbon cycling, hydrological network flows, and epidemiology and population dynamics. These contexts, however, often involve compartment-to-compartment flows that are incongruent with the conventional assumption of complete mixing that results in exponential residence times in linear models. Here we detail a general method for assigning any desired residence time distribution to a given intercompartmental flow, extending compartment modeling capability to transport operations, power-law residence times, diffusions, etc., without resorting to composite compartments, fractional calculus, or partial differential equations (PDEs) for diffusive transport. This is achieved by writing the mass exchange rate coefficients as functions of age-in-compartment as done in one of the first compartment models in 1917, at the cost of converting the usual ordinary differential equations to a system of first-order PDEs. The PDEs are readily converted to a system of integral equations for which a numerical method is devised. Example calculations demonstrate incorporation of advective lags, advective-dispersive transport, power-law residence time distributions, or diffusive domains in compartment models.
期刊介绍:
Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter.
Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.