Decompositions of the stable module ∞ $\infty$ -category

Pub Date : 2022-10-29 DOI:10.1112/topo.12269
Joshua Hunt
{"title":"Decompositions of the stable module \n \n ∞\n $\\infty$\n -category","authors":"Joshua Hunt","doi":"10.1112/topo.12269","DOIUrl":null,"url":null,"abstract":"<p>We show that the stable module <math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-category of a finite group <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> decomposes in three different ways as a limit of the stable module <math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-categories of certain subgroups of <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. Analogously to Dwyer's terminology for homology decompositions, we call these the centraliser, normaliser, and subgroup decompositions. We construct centraliser and normaliser decompositions and extend the subgroup decomposition (constructed by Mathew) to more collections of subgroups. The key step in the proof is extending the stable module <math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-category to be defined for any <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-space, then showing that this extension only depends on the <math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>-equivariant homotopy type of a <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-space. The methods used are not specific to the stable module <math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-category, so may also be applicable in other settings where an <math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-category depends functorially on <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the stable module $\infty$ -category of a finite group G $G$ decomposes in three different ways as a limit of the stable module $\infty$ -categories of certain subgroups of G $G$ . Analogously to Dwyer's terminology for homology decompositions, we call these the centraliser, normaliser, and subgroup decompositions. We construct centraliser and normaliser decompositions and extend the subgroup decomposition (constructed by Mathew) to more collections of subgroups. The key step in the proof is extending the stable module $\infty$ -category to be defined for any G $G$ -space, then showing that this extension only depends on the S $S$ -equivariant homotopy type of a G $G$ -space. The methods used are not specific to the stable module $\infty$ -category, so may also be applicable in other settings where an $\infty$ -category depends functorially on G $G$ .

分享
查看原文
稳定模∞的分解$\infty$ -范畴
我们证明了有限群G $G$的稳定模∞$\infty$ -范畴以三种不同的方式分解为G $G$的某些子群的稳定模∞$\infty$ -范畴的极限。类似于Dwyer的同调分解术语,我们称这些为集中分解、规范化分解和子群分解。我们构造了中心化分解和归一化分解,并将子群分解(由Mathew构造)扩展到更多的子群集合。证明的关键步骤是将稳定模∞$\infty$ -范畴推广到任何G $G$ -空间,然后证明该扩展仅依赖于G $G$ -空间的S $S$ -等变同伦类型。所使用的方法并不特定于稳定模块∞$\infty$ -类别,因此也可以适用于其他设置,其中∞$\infty$ -类别在功能上依赖于G $G$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信