GKM-theory for torus actions on cyclic quiver Grassmannians

IF 0.9 1区 数学 Q2 MATHEMATICS
Martina Lanini, Alexander Pütz
{"title":"GKM-theory for torus actions on cyclic quiver Grassmannians","authors":"Martina Lanini, Alexander Pütz","doi":"10.2140/ant.2023.17.2055","DOIUrl":null,"url":null,"abstract":"<p>We define and investigate algebraic torus actions on quiver Grassmannians for nilpotent representations of the equioriented cycle. Examples of such varieties are type <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> flag varieties, their linear degenerations and finite-dimensional approximations of both the affine flag variety and affine Grassmannian for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub></math>. We show that these quiver Grassmannians equipped with our specific torus action are GKM-varieties and that their moment graph admits a combinatorial description in terms of the coefficient quiver of the underlying quiver representations. By adapting to our setting results by Gonzales, we are able to prove that moment graph techniques can be applied to construct module bases for the equivariant cohomology of the quiver Grassmannians listed above. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"11 19","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.2055","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

We define and investigate algebraic torus actions on quiver Grassmannians for nilpotent representations of the equioriented cycle. Examples of such varieties are type A flag varieties, their linear degenerations and finite-dimensional approximations of both the affine flag variety and affine Grassmannian for GL n. We show that these quiver Grassmannians equipped with our specific torus action are GKM-varieties and that their moment graph admits a combinatorial description in terms of the coefficient quiver of the underlying quiver representations. By adapting to our setting results by Gonzales, we are able to prove that moment graph techniques can be applied to construct module bases for the equivariant cohomology of the quiver Grassmannians listed above.

循环颤动Grassmann上环面作用的GKM理论
我们定义并研究了等向环的幂零表示在箭袋格拉斯曼上的代数环面作用。这类变体的例子是A型旗变体、它们的线性退化以及GL的仿射旗变体和仿射Grassmann的有限维近似⁡ n.我们证明了这些配备了我们特定环面作用的箭袋-格拉斯曼是GKM变种,并且它们的矩图允许根据潜在箭袋表示的系数箭袋进行组合描述。通过适应Gonzales的设置结果,我们能够证明矩图技术可以用于构造上面列出的箭袋Grassmann的等变上同调的模基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信