Fitting ideals of class groups for CM abelian extensions

IF 0.9 1区 数学 Q2 MATHEMATICS
Mahiro Atsuta, Takenori Kataoka
{"title":"Fitting ideals of class groups for CM abelian extensions","authors":"Mahiro Atsuta, Takenori Kataoka","doi":"10.2140/ant.2023.17.1901","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math> be a finite abelian CM-extension of a totally real field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> a suitable finite set of finite primes of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>. We determine the Fitting ideal of the minus component of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>-ray class group of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math>, except for the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math>-component, assuming the validity of the equivariant Tamagawa number conjecture. As an application, we give a necessary and sufficient condition for the Stickelberger element to lie in that Fitting ideal. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"11 23","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1901","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let K be a finite abelian CM-extension of a totally real field k and T a suitable finite set of finite primes of k. We determine the Fitting ideal of the minus component of the T-ray class group of K, except for the 2-component, assuming the validity of the equivariant Tamagawa number conjecture. As an application, we give a necessary and sufficient condition for the Stickelberger element to lie in that Fitting ideal.

CM交换扩展的类群的拟合法
设K是全实域K的有限阿贝尔CM扩张,T是K的有限素数的适当有限集。假定等变Tamagawa数猜想的有效性,我们确定了除2-分量外的K的T-射线类群的负分量的拟合理想。作为一个应用,我们给出了Stickelberger元素位于Fitting理想中的一个充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信